

Z.A.C de La Clé St Pierre
5, rue du Groupe Manoukian
78990 ELANCOURT
Tel. : (33) 01 30 66 08 88
Fax : (33) 01 30 66 72 20

Edition of : 02/14/11 Ref. : EID210041

EXPERIMENTS
MANUAL

on

 EID210 Board
Processor Board based on 682332

Microprocessor (68000 Range)

 Summary

Practicals on EID210 itself Page : 1

SUMMARY

TP 0 : Discovery and implementation of the program pack 3
0.1 Warning 3
0.2 Exposition of the topic 3
0.3 Installation of the equipment 3
0.4 Presentation of a complete phase progress in Assembler language. 5
0.5 Starting of the program 6
0.6 Opening of the « tst_cpu.scr » Assembler file 6
0.7 Display of the « tst_cpu.scr » file 7
0.8 Assembling of the « tst_cpu.scr » on-line file 7

TP 1 : Writing in a Ram area 15
1.1 Exposition of the topic 15
1.2 Description of the specifications : 16
1.3 Solution variant 1 : 17
1.4 Solution variant 2 19

TP 2 : Diode control of the micro-controller "QS" port 21
2.1 Exposition of the topic 21
2.2 Solution 22

TP 3 : Carrying out of an "ECHO" mode from the terminal 29
3.1 Exposition of the topic 29
3.2 Analysis of topic 2.1 30
3.3 Program related to topic 2.1 in 68xxx Assembler 32
3.4 Analysis of topic 2.2 33
3.5 Program related to topic 2.2 in 68xxx Assembler 34

TP 4 : Give the value of a register specified by the User 35
4.1 Exposition of the topic 35
4.2 Analysis 36
4.3 Program in 68xxx Assembler 38

TP 5 : Writing or reading to a specified adress 41
5.1 Exposition of the topic 41
5.2 Analysis 42
5.3 Program in 68xxx Assembler 43

Practicals on EID210 itself Page : 3

TP 0 : DISCOVERY AND IMPLEMENTATION
OF THE PROGRAM PACK

0.1 Warning

NB : The following Experiment sheet has no pedagogical purpose, its aim is to help the User to get
familiar with the 68332 micro-controller EID210 study pack Unit. It is constituted of detailed successive
steps on the hardware and software implementation at the first utilisation.

0.2 Exposition of the Topic

Purpose : Start of the 68332 16/32 bits micro-controller EID 210 000 mother Board:

Starting, file loading , assembling and checking of the step by step operating
mode of a loop program.

Specification : Using a few instructions program for the carrying out of the following
operations :

� Initialisation of registers d0, d1 & d2 to 0,
� Load the value 5 into d0, and 6 into d1,
� Add d0 and d1 with the result (B in hexadecimal) into d0,
� Load the long word 2222 into register d2,
� Loop the program again.

Necessary Test Equipment :

PC Micro Computer using Windows ® 95 or later,

68332 16/32 bits micro-controller mother Board, Ref. : EID 100 000

USB connection cable, or if not available an RS232 cable, Ref. : EGD 000 003

AC/AC 8V, 1 A Power Supply, Ref. : EGD000001,

Assembler source file provided : «tst_cpu.scr»,

Duration : 2 hours

0.3 Installation of the equipment

Page : 4 Practicals on EID210 itself

� Connect the EID 210 000 Board to the development PC Computer with the Assembler program
(provided together with the equipment and already installed after having followed the technical
instructions) in using the USB cable or, if not available, the RS232 serial cable

� Connect the Power Supply to the EID 210 000 Board, (7 to 12 V AC or DC),
� Press the ON/OFF button on the EID 210 000 Board, the red light bulb must go on.

 230 V P.S.
8 V AC

EGD 00001 A/C 8V 1A Power Supply

EID 210 000 : Target Board

EGD 000003 : DB9F/F RS232
serial Cable

Development PC with editor/assembler
program pack already installed.

Practicals on EID210 itself Page : 5

0.4 Presentation of the progress of a complete development
phase in Assembler language.

 Section code
 clr.l d0
 clr.l d1
 move.b #1,d0
 end

Edition du fichier source assembleur (extension src)

Résultat d'assemblage :
Fichier S-RECORD (extension ABS)

Téléchargement via le port RS232

S3802000105AB55555
S380201010555555d5
…

Ordinateur P.C. Avec le logiciel EID210

Assemblage
Linkage

erreur Exécution de la commande Assembleur

EID 210 000 carte mère à base de 68332

Moniteur, débogueur
Exécution et débogage
du programme dans l’EID210000
via la fenetrê moniteur

Page : 6 Practicals on EID210 itself

0.5 Starting the Program.

� Click twice on icon « Eid210 »

0.6 Opening of the Assembler File « tst_cpu.scr »,

� Click on « File », then « Open »

Using the Explorer window, go to the address file : « C:\dms-ge\Eid210\scr\ »

� Click on « tst_cpu .scr », then on « Open »

Practicals on EID210 itself Page : 7

0.7 Display of file « tst_cpu.scr »

After having clicked on open (previous chapter), the file is the following.

It includes : - A first text zone, identified by «* »=> comments,
 - Function « include » which determines the 68332 micro-controller registers,
 - The program start address, « section code », is automatically determined at the
hexadecimal address $803 000, (see ANNEX 2)
 - The Assembler program , with one « label » zone located on the left side of the window,
one « Instruction » zone, one « operand » zone, then one « comment » zone identified once again by
« * ».
 - Detail of the instructions in the « RESSOURCE » file at the end of the document.

0.8 Assembling of on-line file « tst_cpu.scr »

� Click on « Assembler »

The Computer assemblies the program, then displays the assembling result, in the present case: File
 « tst_cpu »
 Number of error(s) = « 0 »
 Number of warning(s) = « 0 »,
 If the Computer says: « no reply of the EID210 », refer to annex 1.

Page : 8 Practicals on EID210 itself

� Click on « OK »

The Computer downloads the program into the target Board EID 210 000, then goes to the monitor
mode.

� Type « DR », then enter for displaying the registers state, accumulators of the CPU

We can observe the CPU registers and accumulators, and mainly the ordinal Counter directed to the
Address $802 000, the first instruction, operating code in hexadecimal « 4280 ».
With the de-assembling function we can read « CLR.L D0 », initialisation of D0 to zero.

Practicals on EID210 itself Page : 9

� For executing the program in step by step mode, type « SS », (Single Step), then Enter.
� For executing an extra step, type Enter again.

We can notice and check the progress of the program, in accordance with the Assembler source,

- First, initialisation of d0, d1, d2,

- Loading of 5 into d0, and 6 into d1,

- Addition of the 2 registers with result into d0,

- Loading of a long word into d2

- etc..

Page : 10 Practicals on EID210 itself

� For displaying the listing file:

- Click on « File »
- Click on « Open »
- In the window, select « All files (*.*) »
- Click on file « tst_cpu.lis »
- Click on « Open ».

We can notice the Assembling result listing including the memory addresses, operation codes, operands
and comments.

� Case of a file having an error :

Go back to paragraphs 0.5 to 0.7, in using the Assembler source file « erreur.src » instead of the file
« tst_cpu.src ».

During the Assembling phase, the Assembler will indicate an error and will refuse to switch to Monitor
mode.

Practicals on EID210 itself Page : 11

� For displaying the error ,

- Click on : « File »,
- then on « Open »,
- then on « all types of files (*.*),
- then on file « error.lis »,
- then on « Open ».

We can notice the error indicated by the Assembler between the code lines :

- $0802006
 and
 - $0802008, the word « error » not being in any case an operating code.

Page : 12 Practicals on EID210 itself

 ANNEX n°1 :

In case of communication failure between the target and the target Board EID 100 000, as indicated
therebelow:

Check and parameter correctly the serial link,

When all files are closed,

Click on “Configure”, then on “ Monitor Configuration ”

Activate the serial link in the software window corresponding to the used hardware link, and activate
options “ Automatic detection ”, and “ Automatic Downloading”.

Practicals on EID210 itself Page : 13

ANNEX n°2 :

Configuration of the Assembler:

 Click on “Configure”

 Click on “Assembler”.

- Code section (9) : Address of the program starting, in live memory on the target Board ($802 000).

- Variable section (15) : Starting address of variables used in the Assembler program in live memory on
the target Board ($803 000).

Page : 14 Practicals on EID210 itself

Practicals on EID210 itself Page : 15

EXERCISE N°1: WRITING IN A RAM ZONE

1.1Topics

Purpose :

Learning of how to handle a conditional connection instruction in an
Assembler program.

Specification : Writing a program in Assembler for placing the alphabet letters from « A to
Z » in the memory zone, starting at the address $804000.

� Save registers used in the cell : a0, d0
� Load starting address $804000 in register a0,
� Initialise d0 register with the first letter « A »,
� Place the current character to the current address,
� Prepare the following character, in incrementing d0,
� Check if the current letter is « Z »,
� Loop if the current letter is # « Z »,
� Restore the context of registers a0 and d0,
� Loop the program,
� End of the program.

� As a variant, do again the same program in using the dbf function as a
loop condition.

�

Necessary Test Equipment :

PC Micro Computer using Windows ® 95 or later,

68332 16/32 bits micro-controller mother Board, Ref. : EID 100 000

USB connection cable, or if not available an RS232 cable, Ref. : EGD 000 003

AC/AC 8V, 1 A Power Supply, Ref. : EGD000001,

Duration : 2 hours

Page : 16 Practicals on EID210 itself

1.2 Detail of specifications :

� Save registers used in the cell : a0, d0
� Load start address $804000 into register a0,
� Initialise register d0 with the first letter « A »,
� Place the current character to the current address,
� Prepare the following character, in incrementing d0,
� Check if the current letter is « Z »,
� Loop again if the current letter is # « Z »,
� Restore the register context a0 and d0,
� Loop again the program,
� End of the program.

� As a variant, do the same program again in using the dbf function as a loop condition.

Practicals on EID210 itself Page : 17

0.9 Variant solution n°1 :

0.9.1 Variant Flowchart n°1

yes

Start

Initialisation :
Start address into a0

Letter A into d0

Save of the CPU context

End of program

Writing of the character into
memory,

Increment of the character,

Restoring the
CPU context

no

Check end of
program

Page : 18 Practicals on EID210 itself

0.9.2 Variant n°1 Program in 68xxx Assembler

* EXERCISE ON EID210 BOARD ITSELF *

* Title : Filling of the memory with the increasing letters of the alphabet. *
* Language: 68000 Cross Assembler: System: Pack EID 100 DMS DIDALAB *
**
*
*
*
*
*
 include EID210.def * Definitions peculiar to the processor Board elements
 section code $803000 * Start of the program section code ($803000)

*
* Initialisation,
* The used registers are saved into the cell
*

*
 movem.l a0/d0,-(sp) * save of registers into the cell
 movea.l #$804000,a0 * Address of the writing start
 move.b #'A',d0 * First letter (A) ASCII capital

*
* Remark: for changing into small letters, it is sufficient to initialise d0 with "a" value *
* and check at last "z" value

**
*
* Start of the main program
*
**
Loop_1
 move.b d0,(a0)+ * Place the current character into the memory
 addq.b #1,d0 * Prepare the following (increment)
 cmp.b #'Z',d0 * Check the last character (comparison with " z ")
 bls.s boucle_1 * End yes ? if not, go back to loop_1
 movem.l (sp)+,a0/d0 * If yes, restore the context

 jmp MONITEUR * End of program and back to the Monitor control

end * End of program

Practicals on EID210 itself Page : 19

0.10 Solution of the Variant n° 2
0.10.1 Flowchart variant n°2 :

yes

Start

Initialise :
Start address into a0

Letter A into d0

Save the CPU context

End

Write the character into the
memory,

Increment of the character

Check end of
program

non

Page : 20 Practicals on EID210 itself

0.10.2 Program of the variant n°2:

**
* EXERCISE ON THE EID210 BOARD ITSELF *

* Title : Filling memory with alphabet letters. *
* Language: 68000 Cross Assembler : System: Pack EID 100 DMS DIDALAB *

* Another solution is also possible in using instruction of
loop primitive dbcc 3 parameters:
* - 1 data register used as a counter,
* - 1 conditional (un) plugging
* - 1 label
*
*
*
*
 include EID210.def * Definition on Board elements

 section code $803000 * Start of the program ($803000)
*
*
**
*
* Initialisation,
* Used registers are saved in the cell
*

*

 movem.l a0/d0,-(sp) * Save of registers in the cell
 movea.l #$804000,a0 * Address of writing start
 move.l #25,d1 * Counter with number of letters minus 1 !!
 move.b #'a',d0 * First letter of small letters alphabet

*
* Loop of the main program
*

Loop_2
 move.b d0,(a0)+ * Memory writing , + increment of a0
 dbf.s d1, boucle_2 * dbf, * Test d1=0, condition always wrong , output
 * When the content of d1 = -1
 jmp MONITEUR * Jump under Monitor control

end * End of program

Practicals on EID210 itself Page : 21

TP 1 : DIODE CONTROL ON MICRO-
CONTROLLER"QS" PORT

1.1 Topics

Purposes:

Being capable of controlling the 3 diodes (labelled D10,D11and D12)
connected to "QS" port of the 68332 Micro-controller .

Being capable of detecting pressing down key labelled "CTRL".

Being capable of implementing the micro-controller internal "Timer" in
interrupt mode in order to carry out a time base.

Specification :

Topic 5-1:
Writing of a program in Assembler language for carrying out a cycle with three
led connected to the micro-controller QS port. Switching from one state to
another is made by pressing down key "CTRL"

In fact, we want to carry out the following cycle :

� Switching of the led labelled D10 (the 2 others are off)
� Switching of the led labelled D11 (the 2 others are off)
� Switching of the led labelled D12 (the 2 others are off)
� Loop

Topic 5-2:
The same cycle than the previous one must be carried out, but in automatic
control (without having to press down key "CTRL"). Switching from one state
to another is made after a lapse of time of about one second, carried out by a
“Time delay” program.

Topic 5-3:
Identical to the previous specification, but in using micro-controller internal
"Timer" in interrupt mode.

Necessary Test Equipment :
PC Micro Computer using Windows ® 95 or later,

68332 16/32 bits micro-controller mother Board, Ref. : EID 100 000

USB connection cable, or if not available an RS232 cable, Ref. : EGD 000 003

AC/AC 8V, 1 A Power Supply, Ref. : EGD000001,

Duration : 4 hours

Page : 22 Practicals on EID210 itself

1.2 Solution
1.2.1 Analysis
"Control" of electroluminescent diodes
These three diodes D10, D11 and D12 are connected to the micro-controller QS port

• D10 to PQS4 link
• D11 to PQS5 link
• D12 to PQS6 link
(Resource document : Structural layouts of the Board, "sheet 5 and 6")

The three bits of QS port must be configured in the output :
� Enter levels 1 to the corresponding positions of QS port control registers

 bit n°4 to 1 ; bit n°5 to 1 ; bit n°6 to 1
 reference : 7654 3210

� As the register is a 16 bits register we have: 0000 0000 0111 0000 -> in Hexadecimal: $0070
� This register address is specified in the definition file with label PQSCTR.

For switching a led on, we must enter 0 into the data register of the QS port :

� This register address is specified in the definition file with label PQSCTR
� For switching only led D10, we must write 0000 0000 0110 0000

Detection of pressing down key "CTRL" :
Following the diagram on the left, pressing down key "CTRL" leads to
the logic state '0' on the "S-Control" signal.
The state of this "S-Control" signal is available in the state register on
line 8 :

Remark :
- The state register is available in using the "REG_ETAT" label which
address is specified in the file to be included "EID210.def".
- For knowing the state of the key, it is enough to read the state
register and do a logic AND with a mask of value : %0000 0001 0000
0000 = $0100
 If the AND result gives $0000, it is because the key is pressed down,
on the other hand, if the result gives $0100, it is because the key is
released.

Carrying out of a program-type time delay :
The time delay is carried out in initialising one variable to a certain value and decrementing this value
until it is equal to zero. The carrying out duration of this decrement loop constitutes the requested lapse of
time. In the following program the variable is included in register d0.

Carrying out of a time delay in using micro-controller internal "Timer" :
For having a periodic interrupt every 1 mS, both registers which labels have been specified in file
EID210.def , must be initialised:
 "PICR" (Periodic Interrupt Control Register) to $0760
 "PITR" (Periodic Interrupt Timer Register) to $0008.
In other respects, the vector table must be initialised and the interrupt program already allowed.

VCC

S-Contrôle

R32
4.7K

SW4
CTRL

1

2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Practicals on EID210 itself Page : 23

1.2.2 Program for specifications 5-1

* PRACTICALS ON EID210 BOARD ITSELF *

 * Check the 3 led on QS port and input "CTRL" control *
 * *

* Specifications : *
******************* *

 * Every press down button CTRL, makes another LED switching on, *
 * let be cycle D10 -> D11 -> D12 -> D10 ... etc *

* FILE NAME: T_PQS.SRC *

* Inclusion of the file specifying the different labels
 include EID210.def
 section code
*

* INITIALISE *

* Configure on outputs, the 3 bits on QS port, on which diodes are connected
Début move.w #$0070,PQSCTR * 3 LED outputs

* MAIN LOOP *

* Switch on (using level 0) the reference LED D10 connected on bit 4 (QS port)
DebBP move.w #$10,d0
AFF move.w d0,d1
 not.w d1 * Complement for switching on 0
 and.w #$0070,d1 * Only validate the 3 led outputs
 move.w d1,PORTQS * Load to the QS port

* Detect press down key "CTRL"

* Wait as long as key "CTRL" is pressed down
ATT1 move.w REG_ETAT,d2
 and.w #$0100,d2
 beq ATT1 * Loop if key "CTRL" is pressed down

* Wait as long as key "CTRL" is released
ATT2 move.w REG_ETAT,d2
 and.w #$0100,d2
 bne ATT2 * Loop if key "CTRL" is released

* Press on key "CTRL" has been detected. Go to the following LED
 lsl #1,d0
 btst #7,d0 * Check if passing out
 beq AFF * If not, display
 bra DebBP * If passing out, re-initialise
*
* END of main loop and of program

 end * End of file

Page : 24 Practicals on EID210 itself

1.2.3 Flowchart for specifications 5-2

 Start

Initialise
- Configure to output the 3 bits of “QS” port

Initialise for only switching LED D10 on

Initialise time delay variable

Decrement of time delay variable

Load into data register of “QS “port

If variable equals to 0

Shift picture register for switching following LED on

If shift, OK.

Start of the main loop

Waiting loop: 1S

End of main loop

Practicals on EID210 itself Page : 25

1.2.4 Program for specifications 5-2

**
 * PRACTICALS ON EID210 BOARD ITSELF *

**
* Carry out a light sequential string with the 3 led on QS port *

 * *
 * Specifications: *
 ******************** *
 * The led switch on following the cycle: *
 * D10 -> D11 -> D12 -> D10 ... etc *
 * Every led lights up during about 1 Sec. *
 * This time is determined by a “program” loop *
 * FILE NAME: CHENI_1.SRC *
 ********************** *

 * File inclusion for specifying the different labels
 include 68332.def

 section code

* INITIALISE

* Configure on outputs, the 3 bits on QS port, on which the diodes are connected
Début move.w #$0070,PQSCTR * 3 LED outputs

* MAIN LOOP

* Switch on (using level 0) reference LED D10 connected to bit 4 (QS port)
DebBP move.w #$10,d0
ALUM move.w d0,d1
 not.w d1 * Complement for switching on 0
 and.w #$0070,d1 * Only validate the 3 led outputs
 move.w d1,PORTQS * Load to QS port

* Wait loop of about 1 second
 move.l #$001FFFFF,d2
ATT sub.l #1,d2
 bne ATT

* Go to next LED
 lsl #1,d0
 btst #7,d0 * Check if passing out
 beq ALUM * If not, display
 bra DebBP * If passing out, re-initialise

* END of main loop and of program
**
 end

Page : 26 Practicals on EID210 itself

1.2.5 Flowchart for Specification n° 5-3

 Start

Initialise
- Configure on output the 3 bits of the QS port
- Configure timer (interrupt every millisecond)

Initialise for switching only LED D10

Load into "QS" port data register

Check if end of time delay

Shift image register for switching next LED

 If shift OK

Start main loop

End of main loop

Interruptible
Program

Interrupt program
(every mS)

Decrement passing counter

 If counter =0
Interrupt return

Position time delay indicator

Interrupt return

Practicals on EID210 itself Page : 27

1.2.6 Program for specification n° 5-3

* PRACTICAL ON EID210 BOARD ITSELF *

* Carry out a light sequential string with the 3 led on QS port *

 * *
 * Specifications: *
 ******************** *
 * The led switch on following cycle: *
 * D10 -> D11 -> D12 -> D10 ... etc *
 * Every led lights up during about 1 Sec. *
 * This time is determined by the 68332 time base *
 * FILE NAME: CHENI_2.SRC *
 ********************** *

* File inclusion for specifying the different labels
 include EID210.def
* Declaration of variables *

 section var
COMPTEUR ds.l 1
INDICATEUR ds.b 1
 section code

* MAIN PROGRAM *

* INITIALISE

* Configure on outputs, the 3 bits on QS port, on which diodes are connected
Début move.w #$0070,PQSCTR * 3 LED Outputs
* Configure time base
 move.l #96,d0 * 96 is the interrupt vector number
 asl.l #2,d0
 add.l #tab_vect,d0 * Initialise the vectors table
 move.l d0,a0
 move.l #it_bt,a1 * f_it-bt is the address of the interrupt function
 move.l a1,(a0)
 move.l #1000,COUNTER * 1000*1mS = 1S
 move.b #$00,INDICATOR * of end of counting
 move.w #$0008,PITR * 1 interrupt every 1 ms
 move.w #$0760,PICR
* MAIN LOOP

* Switch on (using level 0) reference LED D10 connected on bit 4 (QS port)
DebBP move.w #$10,d0
ALUM move.w d0,d1
 not.w d1 * Complement for switching on 0
 and.w #$0070,d1 * Only validate the 3 led outputs
 move.w d1,PORTQS * Load to QS port
* Wait loop of end of time delay
ATT move.b INDICATEUR,D2
 cmp.b #01,D2
 bne ATT
 move.b #$00,INDICATEUR
* Go to the next LED
 lsl #1,d0
 btst #7,d0 * Check if passing out
 beq ALUM * If not, display
 bra DebBP * If passing out, re-initialise
* END of main loop and of program

* INTERRUPT FUNCTION *
* linked to the time base *

it_bt sub.l #$00000001,COMPTEUR
 cmp.l #$00000000,COMPTEUR
 bne it_ret * Return if not equals to 0
 move.b #$01,INDICATEUR * End of time delay
 move.l #1000,COMPTEUR * Re-initialisation of time delay
it_ret rte * Interrupt return
* End of interrupt function

end * End of source file

Page : 28 Practicals on EID210 itself

Practicals on EID210 itself Page : 29

EXERCISE N°2 - CARRYING OUT OF AN "ECHO"
MODE FROM THE TERMINAL

1.3 Topics

Purpose :

Being capable of configuring and using the RS 232 serial communication
function (internal to the 68332 micro-controller), first in "Transmission" mode
("simplex" link), then in "Transmission-Reception" mode("duplex" link).
Being capable of detecting a transition (state variation) on a logic input.
Being capable of defining constants (constant message in ASCII characters)
and variables.

Specification :

Subject n°2.1:
Sending of pre-defined character to the terminal (connected to RS232 serial
link) whenever the "CTRL" pushbutton is pressed down.

Subject n°2.2:
When starting the program, there is a pre-defined message sending (chain of
characters).Then, the program carries out the "echo" mode :
If a key from the computer keyboard is pressed down, then the character is sent
back (displayed on the screen).

Remark: In this case the link is "half duplex" type, because transmission and
reception are not simultaneous.

Necessary Test Equipment :

PC Micro Computer using Windows ® 95 or later,

68332 16/32 bits micro-controller mother Board, Ref. : EID 100 000

USB connection cable, or if not available an RS232 cable, Ref. : EGD 000 003

AC/AC 8V, 1 A Power Supply, Ref. : EGD000001,

Duration : 4 hours

Page : 30 Practicals on EID210 itself

1.4 Analysis of subject 2.1

Detection of pressing down key "CTRL" :
Following the diagram on the left, pressing down key "CTRL" leads to
the logic state '0' on the "S-Control" signal.
The state of this "S-Control" signal is available in state register on line
8 :

Remark :
- The state register is available in using "REG_ETAT" label which
address is specified in the file to be included "EID210.def".
- For knowing the state of the key, it is enough to read the state
register and do a logic AND with a mask of value : %0000 0001 0000
0000 = $0100
 If AND result gives $0000, it is because key is pressed down, on the
other hand, if result gives $0100, it is because the key is released.

1.4.1 Use of serial communication interface
The use of serial interface is carried out by 4 *16 bits registers which labels and addresses have been
specified in file of definitions to be included EID210.def :

� Two control registers (Serial Communication Control Register)
"SCCR0" for specifying the communication speed following formula :
 Baud rate = System frequency / (32* data)
 With "data" the value to be loaded into register "SCCR0" is

" System frequency ", the internal operation frequency which is a multiple of the quartz
frequency connected to inputs "XTAL" and "EXTAL" of the micro-controller.
For complying to the Monitor communication velocity (57600 Baud), this register must
be initialised at 9.

 "SCCR1" for specifying operation mode :
 bit of rank 2 : (RE Receive Enable) must be switched to 1 for enabling reception,
 bit of rank 3 : (TE Transmit Enable) must be switched to 1 for enabling transmission.
 This register must be initialised to %0000 0000 0000 1100 =$000C.

� One data register called "SCDR" (Serial Communication Data Register).

Under this only label, there are two registers, one is used for transmission (allowed for writing)
the other one for reception (allowed for reading).
For transmitting a character via the serial link, loading ASCII code into register SCDR is
sufficient (provided having checked before that it is empty). For receiving a character, reading
the ASCII code in register SCDR (provided having checked before that it is full).

� One state register called "SCSR" (Serial Communication Status Register) with :
* bit of rank 8 ("TDRE" Transmit Data Register Empty) is at 1 when the data register is empty,
which indicates that a character can be transmitted,
* bit of rank 6 ("RDRF" Receive Data Register Full) is at 1 when the data register is full, which
indicates that a character has been received that can be read on the data register "SCDR".
Label masks "TDRE" and "RDRF" have been specified in file EID210.def, enabling the
checking of the state of these bits.

VCC

S-Contrôle

R32
4.7K

SW4
CTRL

1

2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Practicals on EID210 itself Page : 31

1.4.2 Flowchart topic n° 2.1

 Start

Initialise
- Transmission speed at 57600 baud
- Validate serial transmission

Read state register REG_ETAT

Start main loop

If key "CTRL" pressed down

If key "CTRL" released

Read state register of serial link "SCSR"

If transmission register empty

Read state register REG_ETAT

Load pre-defined character into data register of
serial link "SCDR"

Specify
- Character to be transmitted

End of main loop

Page : 32 Practicals on EID210 itself

1.5 Program on topic n°2.1 in 68xxx Assembler

**
* PRACTICALS ON EID210 BOARD ITSELF *
**
* TRANSMIT A CHARACTER TO SERIAL COMMUNICATION PORT*

 * *
 * Specification : *
 ******************* *
 * When pressing down key "CTRL" located on EID210, a character must be *
 * displayed onto the computer screen *
 * *
 * *
 * FILE NAME: T_SERIE1.SRC *
 ******************** *
 **
* DEFINITION & DECLARATIONS *

* Inclusion of file specifying the different labels
 include EID210.def

* Declaration of character to be transmitted *

Char EQU $30 * Character 0 will be sent (ASCII Code : $30)

 section code
**
* START OF EXECUTABLE PROGRAM *
**
* INITIALISE

* The next initialisations are inhibited because the Monitor already configured the serial port !
* Transmission speed
Début move.w #9,SCCR0 * For having a speed of 57600 Baud
* Validate transmission (bit "RE")
 move.w #$0004,SCCR1

* MAIN LOOP *

Deb_BP * Start of main loop
* Detect pressing down key "CTRL"

* Wait as long as key "CTRL" is pressed down
ATT1 move.w REG_ETAT,d2
 and.w #$0100,d2
 beq ATT1 * Loop if key "CTRL" is pressed down

* Wait as long as key "CTRL" is released
ATT2 move.w REG_ETAT,d2
 and.w #$0100,d2
 bne ATT2 * Loop if key "CTRL" is released

* Pressing down key "CTRL" is detected
* Wait till transmission is free
ATT3 move.w SCSR,d0 * Acquisition of state register of serial link
 and.w #TDRE,d0 * Bit indicating that transmission register is empty
 * Transmit Data Register Empty
 beq ATT3 * Loop if transmission not ready
 * Transmit character
 move.w #char,SCDR

 bra Deb_BP *Loop

* END of main loop and program *

 end * End of Assembler source file

Practicals on EID210 itself Page : 33

1.6 Analysis of topic n°2.1

Carrying out of echo

Transmit message
(Character after character)

 Start

Initialise
- Transmission speed at 57600 baud
- Validate serial transmission

Read state register of serial link "SCSR"

If transmission register is empty

Specify
- Message to be transmitted
- Memory location for variable

Load next character into data register
of serial link ("SCDR")

If end of message

Read state register of serial link "SCSR"

If reception register is full (RDRF)

Read data register of serial link "SCDR"
Then, memorise ASCII code of received character

Read state register of serial link "SCSR"

If transmission register is empty (TDRE)

Read previous character in data register of serial link
"SCDR"

End of MAIN LOOP

Start of MAIN LOOP

Page : 34 Practicals on EID210 itself

1.7 Program on topic n°2.2 in 68xxx Assembler

* PRACTICALS ON EID210 BOARD ITSELF *
**
* TRANSMIT THE RECEIVED CHARACTER BACK TO SERIAL *

 * COMMUNICATION PORT *
 * Specification : *
 ******************* *
 * - When starting program, there is a message sending *

* - Then, the program carries out the "echo" mode : *
* If a character is pressed down on the computer keypad,, it comes back, displayed onto the screen *

 * FILE NAME: T_SERIE2.SRC *
 **
* DEFINITION & DECLARATIONS *
**
* Inclusion of file specifying the different labels
 include EID210.def

* Declaration of variables *

 section var
Message dc.b ' BONJOUR! Press a key down, the character must be displayed
Char ds.w 1 * For memorising the received character
 section code
**
* START OF EXECUTE PROGRAM *
**
* INITIALISE

* Transmission speed
Start move.w #9,SCCR0 * For having a speed of 57600 Baud
* Validate transmission & reception
 move.w #$000C,SCCR1
 move.l #0,d1 * Into d1, the number of transmitted characters
 move.l #Message,A1 * Into A1, the address of message start
* Sending of message Wait free transmission
ATT1 move.w SCSR,d0 * Acquisition of state register of serial link
 and.w #TDRE,d0 * Bit indicating if transmission register is free
 beq ATT1 * Loop if transmission unready
 move.b (A1),d0
 move.w d0,SCDR
 add.l #1,d1 * Pass to the next character
 add.l #1,A1 * Check if message transmit carried out
 cmp.l #66,d1 * There is 66 characters in the message
 bne ATT1
ATT2 move.w SCSR,d0 * Acquisition of state register of serial link
 and.w #TDRE,d0 * Bit indicating if transmit register empty
 beq ATT2 * Loop if transmit unready
 move.w #$0D,SCDR * $0D is ASCII code of CR "Enter"
ATT3 move.w SCSR,d0
 and.w #TDRE,d0
 beq ATT3 * Loop if transmit unready
 move.w #$0A,SCDR * $0A is ASCII code of LF "jump line"
* MAIN LOOP *

 * Wait character reception
Deb_BP move.w SCSR,d0 * Acquisition of state register of serial link

nd.w #RDRF,d0 * Bit indicating if receive register full
 * Receive Data Register Full
 beq Deb_BP * Loop if nothing received
 move.w SCDR,char * Received character recovered
 * Wait transmission ready
AT2 move.w SCSR,d0 * Acquisition of state register of serial link
 and.w #TDRE,d0 * Bit indicating if transmit register empty
 * Transmit Data Register Empty
 beq AT2 * Loop if transmit not ready
 *Transmit received character back
 move.w char,SCDR
 bra Deb_BP * Boucler
* END of main loop and program
**
 end * End of Assembler source file

Practicals on EID210 itself Page : 35

TP 2 : GIVE VALUE TO A REGISTER
SPECIFIED BY THE USER

2.1 Exposition of the Topics

Purpose :

- Being capable of configuring and using the serial RS 232 communication
function (function internal to the 68332 Micro-controller), in "Transmission-
Reception" mode ("duplex" link).

- Being capable of acquiring a character and checking its relevance, then
executing a pre-specified action (answering by a pre-specified message).

- Being capable of converting a 16 bits binary word into ASCII 16 characters.

- Being capable of structuring a program in requiring repetitively, to sub-
programs (Assembler) or functions ('C' language).

Specifications :

Initialise to remarkable values the data registers not used in the program, on 16
bits : D2 = $2222 , D3 = $3333 etc …

When launching the program, there is transmission of a pre-specified message
(chain of characters) : ' NUMERO DU REGISTRE ? DE 2 à 7 ' (Register
number? From 2 to 7).

When the User enters the register number he wants to know the value, the
program controls the received code, and displays the message :
'' NUMERO DU REGISTRE NON VALIDE ", (not valid register number) if
error. Otherwise, it reads the specified register then, transmits the answer as : d
= xxxxxxxxxxxxxxxx
(with x as different binary states). Then, go back to Start position (asking of
register number).

Necessary Test Equipment :

PC Micro Computer using Windows ® 95 or later,

68332 16/32 bits micro-controller mother Board, Ref. : EID 100 000

USB connection cable, or if not available an RS232 cable, Ref. : EGD 000 003

AC/AC 8V, 1 A Power Supply, Ref. : EGD000001,

 Duration : 4 hours

Page : 36 Practicals on EID210 itself

2.2 Analysis
2.2.1 General Flowchart

Acquire register n°

Transmit input message Character after character)

 Start

Initialise - Serial communication
 - different registers

Specify : - Message to be transmitted
 - Locations of memory & variables

Load the next character into the serial link data
register ("SCDR")

If end of message

 If register n° is valid

Call "Wait, ready to transmit" (AT_TP)

Sub-program
(Assembler)
or function
("C" language)

Start of MAIN LOOP

Call "Wait, Character reception " (AT_RC)
 (In return, the character is in register d0)

If received character is a number

Determine concerned register

Call "Display Specified Register State " (AF_ERS)

End of MAIN LOOP

Transmit error message
(Character by character)

Load the next character into the serial link data
register ("SCDR")

If end of message

Call "Wait, ready to transmit" (AT_TP)

Sub-program
(Assembler)
or function
("C" language)

Sub-program
(Assembler)
or function ("C"
language)

Sub-program
(Assembler)
or function ("C"
language)

Practicals on EID210 itself Page : 37

2.2.2 Flowcharts of sub-programs (or functions)

Call "Wait ready to transmit" (AT_TP)

Write character 'd'

Read state register of serial link "SCSR"

If transmission register empty (TDRE)

Return of sub-program or function

 "Wait, ready to transmit" (AT_TP)

Read state register of serial link "SCSR"

If transmission register full (RDRF)

Return of sub-program or function

Read state register of serial link "SCSR"

 "Wait, Reception Character" (AT_RC)
 (When return, character in register d0)

 "Display of specified state register " (AF_ERS)

Call "Wait ready to transmit" (AT_TP)

Write character '='

For every bit of specified register

If bit is = 0

It is = '0' , send corresponding ASCII code : ($30) It is = 1, send ASCII code : ($31)

Pass to next bit

Return of sub-program or function

If all bits transmitted

Call "Wait ready to transmit" (AT_TP)

Page : 38 Practicals on EID210 itself

2.3 Program in 68xxx Assembler

* PRACTICALS ON EID210 BOARD ITSELF *

* DISPLAY OF REGISTER CONTENT *

 * *
 * Specifications: *
 ******************** *
 * - When starting program, there is a message transmission *
 * - The data register n° which value must be known, is typed *

 (n° between 2 and 7 inclusive) *
 * *
 * FILE NAME: T_SERIE3.SRC *
 ********************************** *

* DEFINITION & DECLARATIONS *
**
* Inclusion of file for specifying the different labels
 include EID210.def

* Declaration of variables *

 section var

Message dc.b ' Numéro du registre de donnée (Data register n°) ? de 2 à 7 (from 2 to 7) '
Mes_erreur dc.b ' Numéro de Registre non valide (Register n° not valid) '
Char ds.w 1 * For memorising the first received character
Num ds.b 1 * For memorising the bit n° to be displayed

 section code
**
* START OF EXECUTE PROGRAM *
**
* INITIALISE

* The following initialisations are inhibited, because the Monitor already configured the serial port !
* Transmission speed
Début move.w #9,SCCR0 * For having a speed of 57600 Baud
* Validate transmission & reception
 move.w #$002C,SCCR1
* Initialisation of registers
 move.w #$2222,d2
 move.w #$3333,d3
 move.w #$4444,d4
 move.w #$5555,d5
 move.w #$6666,d6
 move.w #$7777,d7

* MAIN LOOP *

Deb_BP * Sending of input message
 move.w #$0,d1 * Into d1, the number of transmitted characters
 move.l #Message,A1 * Into A1, the address of message start
* Passing to next line and line jump
 bsr AT_TP * For waiting if ready to transmit
 move.w #$0D,SCDR * $0D is the ASCII code of CR "Enter"
 bsr AT_TP * For waiting if ready to transmit
 move.w #$0A,SCDR * $0A is the ASCII code of LF " line jump "
Disp_cont_mes bsr AT_TP * For waiting if ready to transmit
 move.b (A1),d0
 move.w d0,SCDR
 add.l #1,d1 * Pass to next character
 add.l #1,A1 * Check if message sending ended
 cmp.l #43,d1 * There is 43 characters in the message
 bne Aff_suite_mes
* Passing to next line and line jump
 bsr AT_TP * For waiting if ready to transmit
 move.w #$0D,SCDR * $0D is the ASCII code of CR "Enter"
 jsr AT_TP * For waiting if ready to transmit
 move.w #$0A,SCDR * $0A is the ASCII code of LF " line jump "
* Cont. next page

Practicals on EID210 itself Page : 39

* Continuation
* Reception of the register n°, which value is unknown

* The received character must be a figure between 0 and 9 (ASCII Code between $30 and $39)
 bsr AT_RC * Wait character reception
 move.w SCDR,char * Recovering of received character
 move.w char,d0
 and.w #$00FF,d0
 cmp.w #$0030,d0 * Check if received character is a figure
 blt EM_erreur * The figure ASCII codes are > to $30
 cmp.w #$0039,d0 * Waiting for a figure
 bgt EM_erreur * The figure ASCII codes are < to $39
* Display of binary specified state register

 move.w char,d0
 and.w #$000F,d0
 cmp.w #$0002,d0
 bne test_si_d3 * Go out if it is not d2
 * Display of d2 state
 move d2,d1
 bsr AF_ERS * Toward display of specified state register
 bra Deb_BP * Return to main loop start
Test si_d3 cmp.w #$0003,d0 * Check if d3 state requested
 bne test_si_d4 * Go out if it is not d3
 * Display of d3 state
 move d3,d1
 bsr AF_ERS * Toward display of specified state register
 bra Deb_BP * Return to main loop start
Test si _d4 cmp.w #$0004,d0 * Check if d4 state requested
 bne test_si_d5 * Go out if it is not d4
 * Display of d4 state
 move d4,d1
 bsr AF_ERS * Toward display of specified state register
 bra Deb_BP * Return to main loop start
Test si _d5 cmp.w #$0005,d0 * Check if d5 state requested
 bne test_si_d6 * Go out if it is not d5
 * Display of d5 state
 move d5,d1
 bsr AF_ERS * Toward display of specified state register
 bra Deb_BP * Return to main loop start
Test si_d6 cmp.w #$0006,d0 * Check if d6 state requested
 bne test_si_d7 * Go out if it is not d6
 * Display of d6 state
 move d6,d1
 bsr AF_ERS * Toward display of specified state register
 bra Deb_BP * Return to main loop start

Test si_d7 cmp.w #$0007,d0 * Check if d7 state requested
 bne EM_erreur * Go out if it is not d7
 * Display of d7 state
 move d7,d1
 bsr AF_ERS
 jmp Deb_BP * Return to main loop start
* Register N° not valid (between 2 and 7 inclusive) thus sending of error message
EM_erreur move.w #$0,d1 * Into d1, the number of transmitted characters
 move.l #Mes_erreur,A1 * Into A1, the address of message start
* Pass to next line and line jump
 bsr AT_TP * For waiting if transmission ready
 move.w #$0D,SCDR * $0D is the ASCII code of CR "enter"
 bsr AT_TP * For waiting if transmission ready
 move.w #$0A,SCDR * $0Ais the ASCII code of LF "Jump line"
EM_erreur1 bsr AT_TP * For waiting if transmission ready
 move.b (A1),d0
 move.w d0,SCDR
 add.l #1,d1 * Pass to next character
 add.l #1,A1 * Check if message sending achieved
 cmp.l #31,d1 * There are 31 characters into the message
 bne EM_error1

Loop jmp Deb_BP
* END of main loop and main program
**

Page : 40 Practicals on EID210 itself

**
* Waiting sub-program if ready to transmit
**
AT_TP move.w SCSR,d0 * Acquire the serial link state register
 and.w #TDRE,d0 * Bit indicating if transmission register empty
 * Transmit Data Register Empty
 beq AT_TP * Loop if transmission unready
 rts * Return from sub-program

**
* Waiting sub- program if character reception
**
AT_RC move.w SCSR,d0 * Acquire The serial link state register
 and.w #RDRF,d0 * Bit indicating if reception register full
 * Receive Data Register Full
 beq AT_RC * Loop if nothing received
 rts * Return from sub-program

**
* Display Sub-program for specified register state
**
AF_ERS * Transmit character 'd'
 bsr AT_TP * For waiting if transmission ready
 move.w #$64,SCDR * $64 is the ASCII code of letter d
 * Transmit register n°
 bsr AT_TP * For waiting if transmission ready
 move.w char,d0
 move.w d0,SCDR * Into d0 there is the n° of ASCII code
 * Transmit characters '='
 jsr AT_TP * For waiting if transmission ready
 move.w #$3D,SCDR * $3D is the ASCII code of character =
 move.b #16,num * d1 includes the rank of displayed bit
 * 15 binary states are transmitted following each other MSB ... LSB
AF_ERS2 lsl.w #1,d1
 bcc AF_ERS0 * Go out if bit = 0
 * It is 1 thus, the ASCII code of figure 1 is transmitted
 jsr AT_TP * For waiting if transmission ready
 move.w #$0031,SCDR * The ASCII code of figure 1 is transmitted
 bra AF_ERS1
AF_ERS0 * It is 0 thus, the ASCII code of figure 0 is transmitted
 jsr AT_TP * For waiting if transmission ready
 move.w #$0030,SCDR * The ASCII code of figure 0 is transmitted
AF_ERS1 * Pass to the next bit
 sub.b #1,num
 bne AF_ERS2
 rts * Return from sub-program
 * END of specified register state display sub-program
**

* END OF SUB-PROGRAMS

 end * End of Assembler source file

Practicals on EID210 itself Page : 41

PRACTICAL N° 5: WRITING OR READING TO A
SPECIFIED ADDRESS

2.4 Topics

Purposes :

Being capable of configuring and using the RS232 serial communication
function (internal to the 68332 Micro-controller), in "Transmission-Reception"
mode ("duplex" link).
Being capable of acquiring a message (chain of characters) constituting an
order, of analysing this message for the detection of possible errors then,
executing and answering to this message.
Being capable of converting encoded ASCII information into hexadecimal and
vice versa.

Specifications :

When starting the program, there is a pre-defined message sending (chain of
characters) informing about syntax:
 "FORMAT: Type E for writing
 L for reading "

If the answer is 'E' , the address (on 6 digits) is requested, then the data (4
digits). There is checking of received information (ASCII codes of HEXA
codes).If an error is detected, there is transmission of an error message:
 “ CARACTERE NON VALIDE ! RECOMMENCER” (not valid
character! Renew)
If there is no error detected, writing is carried out and a message is sent
"ECRITURE effectuée" (Writing carried out)

If the answer is 'L' , the address on 6 digits is requested . There is checking of
received information (ASCII codes of HEXA codes).If an error is detected,
there is transmission of an error message:
 “ CARACTERE NON VALIDE ! RECOMMENCER” (not valid
character! Renew)
If there is no error detected, writing is carried out and a message is sent:
 "Valeur lue à l’adresse spécifiée: xxxx " (Value read at specified
address: xxxx)
where xxxx is the word read at the specified address, on HEXA. encoded 16
bits.

 Necessary Test Equipment :

PC Micro Computer using Windows ® 95 or later,
68332 16/32 bits micro-controller mother Board, Ref. : EID 100 000
USB connection cable, or if not available an RS232 cable, Ref. : EGD 000 003
AC/AC 8V, 1 A Power Supply, Ref. : EGD000001,

 Duration : 4 hours

Page : 42 Practicals on EID210 itself

2.5 Analysis

 Start

Initialise - Serial communication
 - Different registers

Specify: - Different messages to be sent
 - Locations memory and variables

Start of MAIN LOOP

End of MAIN LOOP

Send message: FORMAT: Type E for writing
 L for reading

Send message:
 WRITING : Enter address

Wait for the operator answer

If error of character in answer

Send message:
 CHARACTER not valid ! RENEW

Send message:
 WRITING : Enter address

Wait for the operator answer

If character is E

Send message:
 READING: Enter address

Wait for the operator answer

If character is L

E

If error of character in answer

Wait for the operator answer

E

Send message:
 WRITING Carried out

Send message:
 Value read

Wait for the operator answer

Carry out the requested reading

 If error of character in answer

Carry out the requested reading

E

Practicals on EID210 itself Page : 43

2.6 Program in 68xxx Assembler

* PRACTICALS ON EID210 BOARD ITSELF *

* WRITING OR READING AT A MEMORY ADDRESS *

 * Specifications: *
 ******************* *
 * - When starting the program, there is message sending *
 * - Format of a writing request at a specified address : *
 * Eaaaaaa=?? where aaaaaa -> Hexadecimal address *
 * ?? -> value to be written in Hexadecimal *
 * - Format of a writing request at a specified address : *
 * Laaaaaa where aaaaaa -> Hexadecimal address *
 * - The answer is: (aaaaaa) = ?? *
 * *
 * FILE NAME: T_SERIE4.SRC *
 ********************** *
 **
**
* DEFINITION & DECLARATIONS *
**
* File inclusion defining the different labels
 include EID210.def

* Declaration of variables *

 section var
Mes_entree1 dc.b ' FORMAT: Type E for writing '
Mes_entree2 dc.b ' L for reading '
Mes_entree3 dc.b ' Caution, if writing in RAM, save sections "var" and "code" '
Mes_rep_Lec dc.b ' READING: Enter one address (on 6 HEXA characters) '
Mes_rep_Ecr1 dc.b ' WRITING: Enter one address (on 6 HEXA characters) '
Mes_rep_Ecr2 dc.b ' WRITING: Enter the data (on 4 HEXA characters) '
Mes_rep_Ecr3 dc.b ' WRITING: Carried out '
Mes_Val_Lue dc.b ' Value read at 1st specified address: '
Mes_erreur dc.b ' CARACTERE non valide ! RECOMMENCER '
Char ds.w 1 * For memorising the 1st received character
Num ds.b 1 * For memorising the received character number
Nombre ds.b 1 * For the number of characters to be displayed
AD_ASCII ds.b 6 * For memorising the address in ASCII
AD_HEXA ds.l 1 * For memorising the address in HEXA
DATA_lue ds.w 1
DATA_HEXA ds.w 1 * For data in HEXA
DATA_ASCII ds.b 4 * For memorising the data in ASCII
 section code
**
* START OF EXECUTE PROGRAM *
**
* INITIALISE

* The following initialisations are inhibited, because the serial port is already configured by the monitor!
* Transmission speed
Début move.w #9,SCCR0 * For a speed of : 57600 Baud
* Validate Transmission and Reception
 move.w #$002C,SCCR1

* MAIN LOOP *

Deb_BP * Sending of input message
 move.l #Mes_entree1,A1 * Into register A1, the address message
 move.b #55,nombre * Number of characters to be displayed
 jsr Env_Mes
 move.l #Mes_entree2,A1
 move.b #55,nombre * Number of characters to be displayed
 jsr Env_Mes
 move.l #Mes_entree3,A1
 move.b #70,nombre * Number of characters to be displayed
 jsr Env_Mes

Page : 44 Practicals on EID210 itself

* CONTINUATION of the program
* Reception of the order

* The 1st received character must be E (ASCII Code $45) or L (ASCII Code $4C)
Test_RC bsr AT_RC * Waiting for character reception
 move.w SCDR,char * The received character is recovered
 move.w char,d0
 and.w #$0045,d0
 cmp.w #$0045,d0 * Check if the received character is E
 bne Test_crL * Check if it is L
* Writing for a specified data to a specified address
**
 move.l #Mes_rep_Ecr1,A1
 move.b #55,nombre * Number of characters to be displayed
 jsr Env_Mes * Send message
* Waiting for the address on 6 hexadecimal characters
 jsr ATT_AD * Toward sub-program of address reception
 cmp.w #0,d0
 beq Test_RC_E * Address reception with error
 jsr AT_TP
 move.w #$20,SCDR * $20 is the ASCII code for "SPACING"
 move.l #AD_ASCII,A1
 move.b #6,nombre * Number of characters to be displayed
 jsr Env_Mes * Send message (address sending)
 move.b #55,nombre * Number of characters to be displayed
 move.l #Mes_rep_Ecr2,A1
 jsr Env_Mes * Send message
* Waiting for the data on 4 hexadecimal characters (one "word")
 jsr ATT_DATA
 cmp.w #0,d0
 beq Test_RC_E * Data reception with error
 jsr AT_TP
 move.w #$20,SCDR * $20 is the ASCII code for "SPACING"
 move.l #DATA_ASCII,A1
 move.b #4,nombre * Number of characters to be displayed
 jsr Env_Mes * Send message
* Address & data are corrects, thus carry out writing
 move.l AD_HEXA,d0
 lsl.l #4,d0
 lsr.l #4,d0 * Load the address in hexadecimal
 move.l d0,A0
 move.w DATA_HEXA,d0 * Load the data
 move.w d0,(A0) * Carry out the reading
 * Sending "Writing carried out"
 move.l #Mes_rep_Ecr3,A1
 move.b #30,nombre * Number of characters to be displayed
 jsr Env_Mes * Send message
 * Jump line twice
 jsr AT_TP
 move.w #$0A,SCDR * $0A is the ASCII code for LF "Jump line"
 jsr AT_TP
 move.w #$0A,SCDR * $0A is the ASCII code for LF "Jump line"
* End of order :WRITING TO A SPECIFIED ADDRESS
 bra Deb_BP * Loop when writing carried out

Test_crL move.w char,d0
 and.w #$004C,d0
 cmp.w #$004C,d0 * Check if the received character is L
 bne Test_RC_E * Send error message
* Reading to a specified address

 move.l #Mes_rep_Lec,A1
 move.b #60,nombre * Number of characters to be displayed
 jsr Env_Mes
* Waiting for the address on 6 hexadecimal characters
 jsr ATT_AD
 cmp.w #0,d0
 beq Test_RC_E * Address reception with error
 jsr AT_TP
 move.w #$20,SCDR * $20 is the ASCII code for "SPACING"
 move.l #AD_ASCII,A1
 move.b #6,nombre * Number of characters to be displayed
 jsr Env_Mes * Send message (address display)

Practicals on EID210 itself Page : 45

* Continuation…
* Reading at specified address
 move.l AD_HEXA,d0
 lsl.l #4,d0
 lsr.l #4,d0 * For erasing MSB byte
 move.l d0,A0 * Load the address in hexadecimal
 move.w (A0),d0
 move.w d0,DATA_lue * Read at the specified address
* Display result message
 jsr TRAD_ASCII * For translating into ASCII 4 characters
 move.b #44,nombre * Number of characters to be displayed
 jsr AT_TP
 move.w #$20,SCDR * $20 is the ASCII code for "SPACING"
 move.l #Mes_Val_Lue,A1
 jsr Env_Mes * Send message ("Value read at the address")
 jsr AT_TP
 move.w #$20,SCDR * $20 is the ASCII code for "SPACING"
 move.b #4,nombre * Number of characters to be displayed
 move.l #DATA_ASCII,A1
 jsr Env_Mes * Send message (read value)
* End of reading at a specified address
 * Jump line twice
 jsr AT_TP
 move.w #$0A,SCDR * $0Ais the ASCII code for LF "Jump line"
 jsr AT_TP
 move.w #$0A,SCDR * $0Ais the ASCII code for LF "Jump line"
 bra Deb_BP * Return to main loop starting

* The character is wrong, renew the order reception

Test_RC_E jsr AT_TP
 move.w #$0A,SCDR * $0Ais the ASCII code for LF "Jump line"
 move.l #Mes_erreur,A1
 move.b #60,nombre * Number of characters to be displayed
 jsr Env_Mes
 * Jump line twice
 jsr AT_TP
 move.w #$0A,SCDR * $0Ais the ASCII code for LF "Jump line"
Loop bra Deb_BP * Return to main loop starting

* END of main loop and main program
**

**
* WAITING SUB- PROGRAM if transmission ready
**
AT_TP move.w SCSR,d0 * Acquire the serial link state register
 and.w #TDRE,d0 * Bit indicating if transmission register is empty
 * Transmit Data Register Empty
 beq AT_TP * Loop when transmission unready
 rts * Return from sub- program

**
* WAITING SUB-PROGRAM if reception of character
**
AT_RC move.w SCSR,d0 * Acquire serial link state register
 and.w #RDRF,d0 * Bit indicating if reception register is full
 * Receive Data Register Full
 beq AT_RC * Loop if nothing received
 rts * Return from sub-program
 * END of specified register state display sub-program

* Continued next page

Page : 46 Practicals on EID210 itself

* CONTINUED …

* SUB-PROGRAM of a message sending with ‘jump line’ and ‘enter’
**
Env_Mes move.b #$0,d1 * Into d1, the number of transmitted characters
Aff_suite_mes bsr AT_TP * For waiting if transmission ready
 move.b (A1),d0
 move.w d0,SCDR
 add.l #1,d1 * Go to next character
 add.l #1,A1 * Check if message sending achieved
 cmp.b Nombre,d1 * There are characters in the message
 bne Aff_suite_mes
 * Go to next line and jump line
 bsr AT_TP * Waiting for transmission ready
 move.w #$0D,SCDR * $0D is the ASCII code for CR "Enter"
 bsr AT_TP * For waiting if transmission ready
 move.w #$0A,SCDR * $0A is the ASCII code for LF "Jump line"
 rts * Return from sub-program
* End of sub-program
**
* SUB-PROGRAM of address reception on 6 ASCII characters
* and address make up in HEXA (3 bytes)

ATT_AD move.b #0,Num * Num character = 0
 move.l #AD_ASCII,A1
 move.l #0,AD_HEXA
ATT_AD1 jsr AT_RC * Waiting for character reception
 move.w SCDR,char * Recovering of received character
 move.w char,d0
 jsr Test_CH * Check if Hexadecimal character
 cmp.w #0,d0 * Value sent back = 0 if errorr
 beq ATT_AD_err * Return with error
 move.b d0,(A1) * memorise the received character
 move.b #5,d3 * restore the address in HEXA
 sub.b num,d3
 and.l #$00000F,d3 * Into d3 the number of shifts
 lsl.l #2,d3 * to be carried out by the quartet
 lsl.l d3,d1 * carry out shifts
 or.l d1,AD_HEXA
 add.l #1,A1 * Go to next character
 add.b #1,Num
 cmp.b #6,Num * Check if the 6 address characters are acquired
 bne ATT_AD1
 rts
ATT_AD_err rts * Return with error (do=0)
* END of the sub-program

* SUB- PROGRAM of the data reception on 4 ASCII characters
* and data composition in HEXA (2 octets) -> in "WORD"

ATT_DATA move.b #0,Num * Num character = 0
 move.l #DATA_ASCII,A1
 move.l #0,DATA_HEXA
ATT_DATA1 jsr AT_RC * Waiting for character reception
 move.w SCDR,char * recovering of the received character
 move.w char,d0
 jsr Test_CH * Check if Hexadecimal character
 cmp.w #0,d0
 beq ATT_DATA_err * Return with error
 move.b d0,(A1) * memorise the HEXA received character in ASCII
 move.b #3,d3 * recovering of the data in HEXA
 sub.b num,d3
 and.w #$000F,d3
 lsl.w #2,d3
 lsl.w d3,d1 * carry out shifts
 or.w d1,DATA_HEXA
 add.l #1,A1 * go to next character
 add.b #1,Num
 cmp.b #4,Num * Check if the 6 address characters are acquired s
 bne ATT_DATA1
 rts
ATT_DATA_err rts * Return with error (do=0)
* Fin du sous programme
* SUITE page suivante

Practicals on EID210 itself Page : 47

* Continued…..

* SUB- PROGRAM of check if Hexadecimal character in ASCII and translation into HEXA

Test_CH and.w #$00FF,d0
 cmp.w #$0030,d0 * Check if the received character is a figure
 blt Test_CH_err * The ASCII codes of HEXA are > to $30
 cmp.w #$0039,d0
 bgt Test_CH1 * The ASCII codes of figures are < to $39
 move.w d0,d1 * Into d0 the ASCI code of the HEXA character
 andi.w #$000F,d1 * Into d1 the HEXA code from 0 to 9
 rts * Return if it is OK
Test_CH1 cmp.w #$0041,d0 * Check if the received character is an HEXA letter
 blt Test_CH_err * ASCII codes of HEXA letters are > to $41
 cmp.w #$0046,d0
 bgt Test_CH_err * ASCII codes of HEXA letters are< to $46
 move.w d0,d1 * Into d0 the ASCI code of the HEXA character
 andi.w #$000F,d1 *
 add.w #9,d1 * Into d1 the HEXA code from 0 to 9
 rts * Return if it is OK
Test_CH_err move.w #0000,d0 * Return with 0 if error
 rts
* END of the sub-program

* Sub- program of data translation from HEXA into ASCII

TRAD_ASCII move.b #0,Num * Num character = 0
 move.l #DATA_ASCII,A1
TRAD_ASCII1 move.w DATA_lue,d0 * Read value, it is Hexa
 move.b #3,d3 * For isolating the quartet to be converted
 sub.b num,d3 * Calculate the shift number
 and.w #$000F,d3
 lsl.w #2,d3
 lsr.w d3,d0 * Carry out the shifts
 and.w #$000F,d0 * Isolate the quartet
 * Convert into ASCII
 cmp.b #9,d0
 bgt TRAD_Lettre * If > than 9, it is a letter (A to F)
 * It is a figure (0 to 9)
 or.b #$30,d0 * The ASCII code of figures are from $30 to $39
 bra TRAD_ASCII2
TRAD_Lettre add.b #55,d0 * The ASCII code of HEXA letters are from $41 to $46 (65 to70)
TRAD_ASCII2 move.b d0,(A1)
 add.l #1,A1
 add.b #1,Num
 cmp.b #4,Num * Check if the 4 data characters are translated
 bne TRAD_ASCII1 * Carry on if it is not ended
 rts * return if it is ended
* END of sub-program

* END OF SUB-PROGRAMS

 end * End of Assembler source file

