

SOMMAIRE:

Référence	Thème	Page			
	Série de TPs avec al mentation du mot 🔔				
TP2-1_Cde-I_BO1_Sujet	Identine – en Boucle Ouverte nº1	5			
TP2-2_Cde-I_RPP_Sujet	Régulation de la tion avec correction Proportionnelle	11			
TP2-3_Cde-I_RPPD_Sujet	Régulation de Position avec correction Proportionnelle +				
	Dériv.~				
TP2-4_Cde-I_Profil_Sujet	Régulation de Position avec cor constitutionnelle,	21			
	-+ comman ie par profil				
TP2-5_Cde-I_RPPnl_Sujet	Re ulation de Position avec correction Proportie et	25			
4	harge mécanique non linéaire (avec frottement s 2c non				
	usé)				
	Série de TPs avec aliment. 2nsion				
TP2-6_Cde-U_BO2	Identification en Boucle Ouv rte n-2	29			
TP2-7_Cde-U_RPF_Sujet	gulation de Position avec cor octi n Proportionnelle	35			
TP2-8_Cde-U_R 'D_Sujet	Régulation de Position avec correc (on Proportionnelle +	41			
	Dérivée				
TP2-9_Cde-1	Régulation de Pr 3c correction Proportionnelle +	45			
	retour tachyr trique gulation consade)				
	Série de TP <ur proto<="" td=""><td></td></ur>				
TP2. Cde?R\$.jet	Prototypag ave moteur alimenté en I	51			
	Simulation par «	\mathbf{Y}			
	Synthès et comparais .5cil »	-			
TP2-11_Cde-U_PR_Sujet	Prototy page rapide avec m. Jr alimenté en U	61			
	Simul vion par « Scilab-XCos »				
TD2 12 Cda T DD 2 Swiat	Sy et comparaison par « D_Scil »	/ 7			
TFZ-IZ_COU-I_FR-Z_SUJU	Pr rough avec moteur alimente en 1, sais la	6/			
	c mpensation and the ments secs				
	Synthèse et comparais a par « D. Scil »				
L	Synniese er comparais in pår « D_Sch »				

Remarque:					7			
Il existe 2	<i>x</i> Num							
- v								
- version 2 livrées avant 2007 équipé d'un moteur Maxon								
						_		
V Jion	Marque	ff، ک	Tension	Constante	R induit	L d'induit	Vitesse à	
F (D150	moteu.	Récucteur	nominale	de couple	(2)	(mHy)	vide	
			(V)	Jm/A)			(tr/min)	
+2007	"nxon	33,2	18	0,021	9,96	1,03	8010	
n.	SMH	39	24	-13	4,97	3,77	5400	
			,					-
	Y						Page: 3/4	

Page manuel "Etraits de sujets de TPs" 5 sur 24 MANUEL DE TRAVAUX PRATIQUES, DE NIVEAU 2, SUR AxNum (ERD150) : Cde-I_RPP Régulation de Positic en Proportionne¹

1. Prédéterminations

1.1. <u>Hypothèses et notations</u>

La sortie du régulateur Sr a donc pour expression $Sr_{(t)} = K_1$. $K_2 \cdot \varepsilon_{(t)} = K \cdot \varepsilon_{(t)}$ où $\varepsilon_{(t)}$ "al d'écart. Le signal d'écart ε a pour expression $\varepsilon_{(t)}$ "m_(t) avec $c_{(t)}$ la consigne de osition de la position." "re ir lage de la position.

Le signal de mesure m a pour expression $m_{(t)} = \mu \cdot o_{(t)}$ où μ est le coefficient de transfert du cap. de position. Si on choisit comme unité de compete le même que celle de l' position (X en mm), on aura donc $\mu=1$ (Capteur à coefficient de transfer une me

Si le frottement est sec est compensé, on prut admettre le schéma ble

On étudiera les deux régimes successifs:

- déplacement hors bande proportion

- déplacement dans la bande proportionnelle en prenant l'instant de l'ortrée dans la bande

proportionnelle comme origine des temps. ^(a) Evaluer le temps de réponse à 5%. J ^(a) application numérique pour v déplacement de 100m. et en tenant compte des résultats obtenus e TP

b/ Obtention d'un régime juste ir stable

Se servir des relevés expérimentar trenus dans le TP "BO1" pour étermine de K qui rendra le système juste instable. En déduire ege trenus la pulsation puis la réduie des oscie.

1.4.2. Comportement en <u>monique établi au pur d'une position de repos</u>

The supposant le système linéaire, proposer une expression de tabli pour une expression $C_{(t)} = C_0 + C_1 . sin(\omega, t)$ où C_0 est la consigne de repos C_1 l'amplique ton sinusoïdale.

The Exprimer la fonction de la suffert on régime harmonique établi, autour d'un in de repos, puis son module et enfin son a sumer conction de la pulsation d'excitation ω , et pour les valeurs particulières: $\omega = 0$, $\omega = \omega_F/2$, $\omega = \omega_F$, $\omega = 2$. ω_F , $\omega = 10$. ω_F et $\omega = \infty$

Remarque:

On fera l'applica n en coordonnée réduite en posant u=

The masse par un maximum (phénome e de réginance) Déterminer à quelle pulsation a lieu ce maximum. Faire pulcation numérique pour les deu valurs du coefficient d'amortissement envisagé.

Expripter la band ssante à 3dB, notée "BP": le domaine de frection (ou de pulsation) tel que l'atténue au modure ne dépasse pas 3dB
 rer avec celle o tenue en boucle ouverte

Re relet les all res des lieux de trans ert et les construction de Nyquist (plan roblexe)
- Lans le plan de Bode.

2. CARACTERISATIO . EN REGN. STATIQUE

2.1. <u>Relevé de la c</u>

'ristique de transfert statique

200

Conditions de l'essai et m de ope.

- Configurer la caractéristiq de charge: Sr₀ en mA déterminé lors du TP 'Cde-I_BO1"

125

- Définir la valeur de repos en 'Cliquant gauche sloc.
- Veiller à ce que l'interr pteur de liaison entre la sou le régulateur et le proce sus so
- Positionner une sonde r le point de mesure Mx en "cliquant droit" dessus

 \mathcal{F} Remplir un tableau de mesure comme ci-dessous en calculant, pour chaque de mesure, l'erreur statique notée ε_s :

150

C en m	
Mx -> X	
$\varepsilon_s = C - \ldots mm$	

2.2. F_____itation

Tracer les caractéristiques de transfert statiques: X = f(C) et $\varepsilon_s = f(C)$ et conclure.

puis $\xi_{\rm F} = 0,2$

ax obtenus en boucle ouverte:

3. CARACTERISATION EN REGUME DYNAMIQUE

3.1. Réponse à un échelon cons

3.1.1. Pour des petits déplacements (dans la bande proportion ... ⊇ulateur) ite appliquer un échelon de ommande Partant d'un état de repos égal 50mm, on $A = A_{Max}$ et ce pour les 3 réglages prévus en provintion.

Visualiser l'évolution de la position (X) au cours du temps.

Conditions de l'essai et mode opér.

- (JSI) U,>.Sr0 Sr0 en mA dét 'rs du TP "Cde-I_BO1" - Configurer la caractéristique de charge.
- Définir la valeur de repos à 50mm.
- Définir la valeur de l'échelon constant à Val $\Sigma = Val$ Repos+A en mm avec un Vérifier que les coefficients K_1 X_2 à la veleur prédéterminée
- Veiller à être en mode Stop • nosit *spos, avec l'interrupteur de sortie régulateur ferme*
- Appliquer l'échelon en "clic uu · le commutateur d'application de l'échelon.
- x et C en "Cliquant gauche " dessus. - Sélectionner les points d'e registren.
- Tracer le réponse la ter prelle en "Cliquant" sur le bouton
- "avant" sur le bouton Dep puis en po itionnar les sonces demandées - Déterminer le dépass ment !! ATTENTION: 1'instant initia. st l'instant où se produit la discontinu. 2 de a consigne !!
- Déterminer le temps de réponse à 5% en "Cliquant"sur le bouton transponse positionnant les sondes demandé !! ATTENTION: l'instant init al est l'instant où se produit la discontinuité de consigne !!
- e "Sonde". Pour la "Cliquer/glisser"depu iées d'un point en positi - On peut connaî point vers l'endroit où on souhaite positionner la sond

Pour effacer rene sonde ina 's rable, il suffit de "Cliq er "dessus

Exploitat on:

- @ Mont. ¹a répense temporelle vérifi
- Thettre en ev. e et calculer l'erreur statique as
- [©] Sauvegarder les ésultats de mesure de un fichier sur
 - Fichier \rightarrow Enregistrer sus
 - Choisir le bon répertoire, réser 2 à cet effet.
 - Choisir un nom de fichier et q r la sauvegarde.

3.1.2. Etude de l'influence (coefficien.

proportionnelle

ortement prédéterminée.

dédui e l'erreur statique rela ve.

Frefaire une série d'essais avec K₂ plus grand. Trace, s enregistrements sur in mune granhe: grâce au bouton et le chargemen es essais par: Fichier \rightarrow Ouvrir

Conclure sur l'influence du c efficient d'action proportionnelle sur le comportement a système.

Transfaire un essai de probaral ité. (Augmenter K₂ q^r... $^{1\circ}$ système juste instable \rightarrow l'amplitude des oscill régime permanent)

On relèvera la valeu $\sum_{n=1}^{\infty}$ qui sera noté $K_{2 \text{ critique}}$ et la période des oscillations non amorties. On en déduira la pulsation de celles-

Etudier la stabilité théorique du système et conclure sur le modèle de fonction 1 transfert envisagé.

3.1.3. Pour carands déplacem its (hors bande prano inelle du régulateur)

Refaire l'expérimentation précédente mais pour des déplacements de 100mm puis 150 mm et enfin 200mm

va'eur

15

3.2. Comportement en régin das idal

3.2.1. Relevés expérimentaux:

On souhaite exciter le système par une conde $C_{(t)} = C_0 + C_1 . sin(\omega.t)$

Conditions de l'essai et mode opér: oire:

- Configurer la caractéristique de charge: Csfi = Sr_0 (valeur obtenue en TP
- Choisir le mode commande "Sinus" avec: Co =100mm la va

Co = 100mm la valeur ne

Amplitude = $C_1 = 50 \text{ mm}$ l'am, itude de la composante sun roïdal,

 $\omega = \omega_F$ la pulsation de la composante sinusoïdale (ω_F étant la pulsation propre r evée lors de l'essai expérimental effectué préc.

- Veiller à être en mode Stop et que l'int rrupteur de sortie soit ferr
- Appliquer l'échelon en "cliquant" sur le commutateur d'application de le
- Sélectionner les points d' istremen Mx et C en "Cliquant gauche " dessu
- Tracer la réponse ten porelle [uant gauche" sur le bouton
- Relever les caractéristiques "2lles en "Cliquant gauche" sur le bouton wis en positionnant les sondes

Poursuivre les er inimentations, pour d'autres valeurs de n'prédéterminations") et vérifier ainsi les reseauré déterminés.

3.2.2. Exploitation

Relevance, égime est établi, la vinum atteinte par la vitesse, la valeur minime et le déphasage de la vitesse avec la tension de muna.
 Vérif , que la répaise obtenue corrobor les prédét

 \rightarrow rap ort des valeurs moyenn

rapp ort des amplitudes: ¹ér nasage: -90° MANUEL DE TRAVAUX PRATIQUES, DE NIVEAU 2, SUR AxNum (ERD150) : Cde-I_RPP Régulation de Positic en Proportionne¹

Page manuel "Etraits de sujets de TPs" 11 sur 24

ue : Il faut note que les valeurs numériques ob.

'té d'un systeme à l'autre n'est pas garantie, mais o

ce TP

ont propres au système expérimenté.

rouver les mêmes ordres de grandeurs.

Page: 2/10

- Lancer la simulation par 'Simulation' puis 'L'éme o, en 'cliquant sur le bouton - Sans fermer la fenêtre où sont tracées les courbes réponse, lancer l'essai du processus de la comparaison ... par 'Outils' puis 'D_Scil (ourbes'.

Cette action donne la main au logiciel «D_____ avec transfert des courbe de résultat de simulation .

Cde-I_PR Prototypage r ide

- Visualiser l's courbes, attendre la fin du transfert des courbes puis qui er, ce qui entraîne le retour vers « D_Scil » avec les courbes affichées.(Procéder comme en BO)

- Montre accomparaison entre la réporent de la résultat de la mulation est satisfaisant Remarque : C faut imperativement quitter «l _Scil» ava éventuellement «Sci ab-Xcos».

- [•]ter eventu ellement la valeur de [•] d' enon P afin de satisfaire le degré d' stabin. Ssé (dépas. [•]t d'e l'ordre de 15%).

- Relever le mps de réponse à 5% et le t_{pic} (ins. extrémum). En dédui pulsation propre du système supposé du deuxième

2.2.2. Etude avec une ex tion en sinusoïdale à la pulsation propro

Procéder à une simulation d'amplitude 80 mm/s et de ulsation d'amplitude 80 mm/s et de ulsation de repos que d'une posigne de repos que d'une de repos que de repo

3. Prototypage en boucle fermée position at con ateur P.

On note le coefficient de transfert en en boucle ou erte $k.\alpha_i$

- Exprimer la fonction de transfert en boucle fermée as la for ne d'un deuxième ordre don.

$$F_{uv(p)} = \frac{X_{(p)}}{C_{(p)}} \approx \frac{1}{\left(1 + \frac{2\xi_F}{\omega}p + \frac{p^2}{\omega}\right)}$$

- Déterminer la valeur du coefficient 'k' qui permettra ç'obtenir un coefficier

- En déduire la valeur de la pulsation propre

- D'après les abaques relatifs aux systèmes du deux ème ordre, prédéterminer 'e temps de réponse 5% et le dépassement relatif.

- Prédéterminer, dans le cas d'une exc. ystème par un échelo rstant, l'amplitude maximum de cet échelon, si on souhaite que le régula eu ne sature pas.

3.2. Simulation et con paraison sous «Scilab-Xcos» en cil»

3.2.1. Etude avec une constant

Partant du schéma-blocs c simulan. 2cèdent (en BO), construire sous «Scilab-Xcos», le schéma-blocs en boucle fermée en position, avec un correc eur à action P. et une pos.
 Choisir une valeur de l ¹on de telle sorte que le régime transitoin 2 proportionnelle du

- Choisir une valeur de l'on de telle sorte que le régime transitoir 2 proportio régulateur Procéder à la simular, a puis la bàse comme dans le chapitre précédent. Compare le régulat de si

- Procéder à la simulation puis la split hèse comme dans le chapitre précédent. Ce nparer le résultat de simulation avec le résultat de sy thèse.

- Relever le temps de réponse à 5% et le t_{pic} (inst nt où a vextrémum) In déduire la pulsation propre du système Japposé du di axième ordre.

3.2.2. <u>A avec une excitation sing</u>

pulsation propre

- Procéder à une lation puis à une vérification $e_{x_{r}}$ dars le cas d'une excitation inusoïdale d'amplitude 50 mm et de pulsation égale pulsation proposition de reposor de l'on choisira égale a lomm.

- Vérifier les caractéristiques de la rérense et comparer le résultat de simulation avec celui de la synthèse expérimentale.

3.2.3. Etude avec une excit tion en la

- Procéder à une simulation puis a ne vérification care inentale dans le cas d'un vitation en rampe de pente 40 mm/s de valeur initiale (position de repos) éga e à 20 mm et de position fina à 200mm (soit un déplacement de 180 m).

- Vérifier les caractéristiques à la réponse et comparer le résultat de simulation avective de la synthèse expérimentale.

Page: 8/10

4. Prototypage en BF positi cor ecteur P.D.

4.1. Cas d'une action dérimée limitée

Dans le schéma bloc précédent on rer place recteur bloc 'k' par un the fonctionnel d'expression : On choisira à priori :

 \rightarrow pour valeur de T_d (constante de dérivation) T_d = $\tau_1/5$

 \rightarrow pour γ la valeur $\alpha = 10$.

 \rightarrow pour **k**₁ la valeur **k**₁=1

La valeur du coefficient k_2 sera dét rmi née expérimentaleme

4.1.1. Etude avec vince citation en échelon constant

- Partant du schéma-ble de si précèdent, construire, sous «Scilab-Xcos», le scala-blocs en boucle fermée en position, avec le corre défini précédemment et une position de repos égale à 20mm

Bloc foncti nnel 'Correcteur I.D. limitée

- Choisir une va eur action de telle sorte que le régime trans toire se asse dan la bande proportionnelle du régulateur.

- Ajuster éve 'uellement la valeur de coefficient k_2 afin de satisfaire la gré de stabilité imposé (dépassement de l'ordre de 15%).

- Procéd _____a nulation puis la synthèse c

le chapitre pre édent. Comparer le résu

× ~ _20

simulation avec le résultat de synthèse. - Rel ver le temps de réponse à 5% et le _{pic} (instant e mum). En déduire la vulsation propre du système supposé du deuxième ordre

4.1.2. Avec une excitation sinus

a pulsation propre

- Procéder à une simulation puis à vérification en tale dans le cas d'une exc. sinusoïdale d'amplitude 10 mm et de pulsation égale à la pulsation procéderminée précédemment. Le ariot va osciller autour d'une position d'repos que l'on choisira égale à 100mm.

- Vérifier les caractéristiques onse et comparer le résultat de simulation la synthèse expérimentale.

4.1.3. Etude avec unc xcitation en ...

- Procéder à une simulation puis à une vérification expérimentale dans le cas d pente 80 mm/s de value r initiale (position de repos) égale à 20 mm et cas d (soit un déplacement de 80 mm).

- Vérifier les caractéristiq es de la réponse et comparer le résultat de simulation a ec celui de la synthèse expérimentale.

T_d.p

 $1 + \frac{T_d}{D}p$

α

S_{r(p)}

4.2. Cas d'une action dérivée appli 🗢 à partir de la mes

Dans le schéma bloc de l'action de correction es

4.2.1. Etude avec une excitation en échelon constant

- Partant du schéma-blocs de simulation preceurur, Onstruire, sous «Scilab en position, avec le correcteur défini précéaum nent et une position de repo

le schéma-blocs en boucle fermée

¹¹° sorte que le régime transitoire se fasse dans la bande proportionnelle du - Choisir une valeur de l'échelon régulateur sé (dépassement de

- Ajuster éventuellement l ι valeur de coe ficient k_2 afin de satisfaire *l'ordre de 15%).*

- Procéder à la simulation puis la synthèse comme dans le chapitre prinéd nt. Comparer le résultat de simulation avec le . 'sultat de synthèse.

- Relever le temps de réponse 35% et le t_{pic} (instant où a lieu l'extrémum) Er déduire la pulsation propre me ordre. du système sup

loct

pre

4.2.2. Etu is avec un excitation sinusc dale à la

- Procéder à un simulation puis à une vérific expérim ... cas d'une excitation s In 1-le ¹ nm et le pulsation égale à l rr pre déterminée précédemment. Le variot va d'amplit osciller autom ² position de repos que l'on ch à 100mm. - Vérifier les caract ristiques de la réponse et comparer simulation avec celui vnthèse expérimentale.

4.2.3. Etude avec une excitati rampe

- Procéder à une simulation puis à rexpérimentale dans le cas d'une excitation en rampe de pente 80 mm/s de valeur initiale position ¹e à 20 mm et de position finale égal : à 200mm (soit un déplacement de 180 mn

- Vérifier les caractéristiques de la reponse et comparer résultat de simulation avec elui de la synthèse expérimentale.

