

Manuel de comptes rendus de travaux pratiques sur le système débit-niveau d'eau « ERD552 » dans le tomaine continu

SOMMAIRE:

Référence	Thème	Page
TP1-BO	Etude syst 🔷 niveau d'eau en Boucle (uverte (BO)	5
TP2-BFP	Etude en loucie née (BF) correct Proportionnelle (P)	29
TP3-BFPI	Etude e' BF avec correction P. + In' ey.	59
TP4-RT	Etude du 🚬 🐂 niveau d'eau ave retard p	81
TP5-DE	Etude du systeme débit d'eau	101
TP6-C	Rég cade : Niveau d'e u avec débit d'eau asservi	117

Avertissement

Les valeurs numériques 'éduites des essais expérimentaux sontion de la configuration (étales, arres). La répétabilité d'une machine à l'astre n'est pas parfaite. Pour un mêmo d'age initial, certaines valeurs, résultant d'essais expérimentaux peuvent donc être légèremen

Manuel de comptes rendus de travaux pratiques sur le système débit-niveau d'eau « ERD552 » dans le l'omaine continu

1 - TP N°3.1 SYSTEME A 3 FUITES; BOUCL GE N" 1; CORRECTE' ... A ACTION P- \rightarrow 1 fuite sur colonne 1 et 2 fuites su colonne 2 (configuration notée ??F) → Avec le débit Max de la pompe co figurée à 6,5 l/min Correcte 1.1 Prédéterminations P+I 1.1.1 Schéma-blocs ε_(р) **C**(**p**) M_{Niv1(p)} Si on admet que le système en BO es. premier G_{vo} $k_{2}.(k_{1}+k_{1})$ ordre très dominant. $1 + \tau. p$ T_i. p Donner le schéma-blocs en 1.1.2 Fonction de trans. 't de la chaîne ouverte: Si on choisit k1.Ti = - et s e: k₀=k₂.Gv₀/Ti nelé, « Correction par compensation du régime dominant » Ce choix particulier En déduire une forme simplé de la FTBO. 1.1.3 Fonction de fert en boucle fermée: Montrer que le système en BF est du premier ordre domin ent exprimer la constante de temps notée TF. 🗞 Application numérique : On sou ,.... . me en BF 4 fois plus 'u'en BO. 5s ; $G_{vo}=0.98$ et on choisit à prior $k_1 = 2$ Application nur érique : On donne τ_{Dor} , τ_{1Niv} En jéduire Ti puis \rightarrow ko e enfin fastiques de la réponse 1.1.4 elon constant Car Donner les caractéristiques de réponse → Temps de réponse à / 1₀, \rightarrow Précision statique. 1.1.5 Caractéristiques er harmonique à la pulsation prop des aniplitudes et le déphasage. Pour la pulsation $\omega = 1/\tau_F$ donner Expérimentai on Lancement du logiciel et configuration \rightarrow Pour lar rrôle commande ∼552 » « · · · Cliquer sur l'10 ne: → Juste uprès chaque lancement du logiciel il est indisp. sable de lancer la calibration des capteurs de niveau (Par « Configurer » pu's « Calibration capteur MPR... » puis « Démarrer... » et en fin de processus « Appli ») → Pui de vérifier que le paran stre « Débit Max pompe » soil à 6,5 l/min (Par 'Configurer' puis « Po smètre nartie opéra "ve ») configur .on des différentes vannes de fuite ('Cliquer sur le bloc « Configuration »). vérifie

- 1.2.2 Exploitation
 - \rightarrow Tracer la caractéristique statique M = fn (C) (par logiciel « Excel » par e' emple)
 - ightarrow Monter que cette caractéristique est s' ciblement linéaire.
 - \rightarrow Faire afficher l'équation de la courbe de te
 - → Définir la valeur de commande de repara ce Cojui permettra d'obtenir a. e de reposi stée
 - M_0 de valeur la plus proche possible d. -30%.
 - \rightarrow En déduire la valeur du coefficier de transfert statique en BF dé ini par : $k_{F0} = \frac{M_0}{C_0}$
 - \rightarrow En déduire la valeur du coefficient de servert en variation aut 4 point de repos: $k_{Fv} = \frac{\Delta M_{niv1}}{AC}$

1.3 <u>Réponse à un éche in constant</u>

1.3.1 Expérimentation

On souhaite relever la réponse temporelle suite à une variation de la commande +10% à partir de 20%.

 \rightarrow Effectuer dans l'ordre indigu

→ Détermin cponse a 2% noté tr5% en "cliquent" sur le outon the et en positionnant les sondes demandées : 'Cliquer' sur bouton @ Mail pour 'xplications éventuelles

 \rightarrow Inscrivez en zone comment vire vos noms et groupe co TD

→ Fair . un "copier Ctr/C - coll ... CTR/V" dans un document "Vord" en vue de la rédaction de votre comr e rendu ou lancer ...e impression en mode "par sage" ("con ^{cr}guration" imprimante).

→ * * tifiez, * * tir de la ponse expérimentale obtenue et de ses exploitations, que le processus ét * * p → partaitem ∧t d'ordre 1.

→ Ar in ar ultéri drement ce relevé expérim. ' « fectuer des enregistrements sous les différents osés :

- & 'Fic. puis 'Enregistre sous...' pour un enregistrement de type *.reg
- 🗞 'Fichier' puis 'Exporter...' pour un enregistrement de type *.txt
- ♥ 'Fichier' puis 'Exporter Xml...' pour un enregistrement de type *.xml

1.3.2 Exploitation :

- → Vérifier du coefficient de transfert statique
- \rightarrow Vérifier du coefficient de transfert en vorlation
- \rightarrow Comparer le temps de réponse à 5% par rappo $\hfill constante de temps <math display="inline">\tau_{\rm f}$
- \rightarrow Proposer un modèle de comportement (Fo. . . . de transfert en BF)

1.4 Etude en régime harmor.

1.4.1 Expérimentations

Cette boîte de dialocue 🥾

le re

Sélectionner une

Dans ce c

début de

'cliquant' sur le bloc 'Command

'cliquanr ' sur ce bouton

- Essai n°1 \rightarrow à la pulsation φ ' τ_{F} ,
- → Choisir une valeur de repos égale à
- \rightarrow Choisir une commande de type "Sinusoïda' et une "Valeur C" (gale a C_0

pour cela "cliquer" sur le bloc "commence puis sur le bouton introduire la valeur de l'amplitude "A" égale à 10%, puis la valeur de le pulsation $\omega = 1/\tau_F$, et en sur "Valider".

 \rightarrow Valider les points d'er stremen , d'abord M puis C , en "cliquar

Dans un premier temps on variant jalement le signal « Sr » (Sortie régular in de vérifier que celui-ci n'entre jamais aturation (n'atteint jamais les limites 0% et 100%)

Valeur Repos = 30.0

Valeur C = 30.0 *

Amplitude = 10.0

Fréquence = 0.00600 + Hz

166.66667 s

rad/s

Annule

13770

00

Sinus

. .

→ Appliquer la commande définir en "cliquant" sur le consultateur 💾, ce qui aura pour es et de

Tps_repo:

démarrer l'enregistrement

 \rightarrow Visualiser la réponse temp ":quant" sur le bouton 🖾

inus en

md d'uplication après le

istrer ent peut être nul.

→ Déterminer les caractér ,tiques es. ¹° le réponse temporelle (Rapport les valeurs

moyennes ; Rapport des amplitudes et déphasag, en 'Cliquant' sur la bouton

Essai n°2 \rightarrow à la pui, ation telle que le déphasage soit de -

1.4.2 Exploitatio

Pour les essai

- → Vérification du rapport des aleurs moyennes
- Le comparer au coefficient d transfert statique détermine précédemment.
- → Vérifier _______ d'un modèle d'ordre 1

Pour l'e sai n 🍸 Recherche de la pulsation particuli ... notée ω, , telle que φ=-90°

- \rightarrow Par proches presives, chercher la pulsation particulièn ω_{90}
- \rightarrow Er γ_1 leur de la constante de temps no γ_2 ante (10tée τ_2) et proposer un modèle plus fidele¹.
- \rightarrow Vérifier le rar, mplitudes et le déphasage à partir du modèle d'ordre 2.

Définir les valeurs caractéristiques du

signal qui sera appliqué après

commutation du conmutateur:

(ou Période ou Pu.....on)

yue ce

Valeur moyenne, Ampl tude

T_100 +

¹ Ouvrage « Automatique : régulations et asservissements » T. Hans aux Editions Lavoisier Chapitre 6

 \rightarrow Pour tracer sur le même plan la réponse expérimentale, il faut charter de fichier au format Xml, sauvegardé en fin d'essai.

nuchent de façon

 \rightarrow Comparer les courbes. La cor paraison est concluante si les 2 c un satisfaisante.

Si ce n'est pas le cas :

-> Fermer le logiciel « D_Scil » (C'est impératif)

-> Changer éventuellem ficients dans le sch n de simulation et proceder à une nouvelle comparaison.

1.6.3 Exploitation : Ar _ ation du modèle

→ Montrer qu'il neut utile d'améliorer la fonction de tran. ert en boucle fermée (modèle d'ordre _, ···s forme décomposée mais également sous forme non décomposée

 \rightarrow Faire un. de comparative de ce modèle avec sont en boucle ouverte et conclure sur l'et su bouclage avec correcte r à stion proportionnelle.

1.7 Infly une perturbat

1.7.1 E périmentation Configration de la régul ERD552. Le système étant dans un état stab * d стиdie · l'influence sur la m ive u de ation déb Retard pu Colone 2 d'une vanne de fuite norman. l'ouve ∻e (F2 Constalit Activer Active par exemp. 2) \rightarrow Changer la configuration er cuquant' le bloc « Configuration », Fuite nº 1... Fuite nº3 53 et F4 seront Les vannes de Ouverte 👻 Ouverte 👻 Constant constamment au werte » Fermé Fermé àt= La vanne de fuite F2 a au départ « te Fuite nº4. Ouverte 👻 Constant 👻 puis s'ouvrire avec un retard de 20s Fermé à t = 0 s Puis vali er la configuration choisie vailder Annule

- \rightarrow Choisir un \circ et une « commande \cdot en « \circ \land \land constant » de 40%.
- -> Attendr ______sation du nivear.
- \rightarrow Appliquer la commande et visualiser l'évolution de la mes re
- → Attendre la fin du régime ran itoire
- \rightarrow Enry super la courbe en vue d'une utilisation ultéri super comparaison de courbes de réponse.

1.7.2 [']`^tio

`rs effers de la perturbation

vue statique : variation du nivea, en régime établi

- d'un per le vue dynamique : constante de temps, temps de réponse à 5%.
- \rightarrow Comparer les effets de la perturbation à ceux constatés en BO

2 - TP N°3.2 SYSTEME A 3 FUITES ; BOUCLAGE NIV CORRECT EU ACTION P+I \rightarrow 1 fuite sur colonne 1 et 2 fuites sur colonne 2 (configure ton repérée 1F-2F) \rightarrow Avec un débit Max pompe égal à 6,5 2.1 <u>Prédéterminations</u> 2.1.1 Schéma-blocs Si on admet le schéma blocs donné ci-ap Fonction de transfert du co teur On a obtenu lors du TP n°1-1 le modèle d'ordre 2 $G_{v(p)} = \frac{G_{v0}}{(1 + \tau_1 \cdot p)(1 + \tau_2 \cdot p)}$ ٨Si $\Delta C_{(r)}$ La FT du correcteur de type PI: K_(p) $= \kappa_2 \cdot (k_1 + \frac{1}{T_1 n})$ G_{v(p)} $\Delta M_{Niv2(p)}$ 2.1.2 Fonction de transferton BO Exprimer la FTBO si on chois : $k_1 = 2^{-1}$ et $k_1 . Ti = \tau_1$ ΛM Les valeurs de Gv(p) ont été obter ues lors du TP n°1.1 On notera $k_0 = k_2 \cdot G_{vo}/1$ 2.1.3 Fonction de transfert en EF $T_{F(p)} = \frac{\Delta w_{NIV2(p)}}{\Delta C_{(p)}}$ $\Delta M_{Niv2(p)}$ Exprimer la FTBF $\frac{M_{Niv2(p)}}{\Delta C_{(p)}} \frac{1}{1 + \frac{2.\xi_F}{\omega_F}p + \frac{1}{\omega_F^2}p^2}$ Que l'on identitie avec la , me canonique non décomposable Contrainte mposée : On souhaite un système qui réponde en échelon constant avec un cipar sement de l'ordre de 15-16% Donner la ficient d'amortisser sée par cette intrainte En déduire la solution : $\rightarrow \omega_{\rm F}$ $\rightarrow k_0$ $\mathbf{k} = \mathbf{k}_2$ 2.1.4 Con portement en régime statiqu . → Et idier mécis on statique. r l'éccrt (erreur) statique mem ent où la sortie régule mur n'est pas → Définir _____nde proportionnelle (domaine saturée, donc inférieure à 100%) 2.1.5 Réponse à un échelon cor stant → Prédire les caractéristiques la réponse à un échelon constant, à condition que le réquiateur reste dans sa bande proportionnelle 2.1.6 Comportement en rég ne han → Prédire les caractérist 2s de la répon excitation sinusoïdale ' pulsation $\omega_{\rm F}$, notamment le rapport des amplitudes et le déphasage. 2.1.7 Réponse à une evitation en rampe ightarrow Prédire les caracteris iques de la réponse à une excitation en rampe de ightarrownotée V . On exprimera notamment l'erreur de tra hage. Expérimentatio Lancement d contiguation \rightarrow Pour lancer le logiciel le contrôle commande \land D_Reg552 » Cliquer and ne: -> Juste haque lancement J logiciel il est indisp Juste la calibration des capteurs de niveau (P 📣 « Configurer » puis « Calibration capteur MPR... » puis « Démarrer... » et en fin de processus « Appli Jer... ») érifie ,...': para stre « Débit Max por ne » mit à 1,5 l/min (Par 'Configurer' puis → Pui opérative') 'Parr

2.2 Pour toutes les expérimentations et exploitations → Idem TP 3.1

→ Puis vérn

inure lon des différentes vannes de 🚬 2 ('Cliquer sur le bloc « Configuration »).

3 - TP N°3.3 SYSTEME A 2 FUITES; BOUCLACE NIVEAU 2; CORRECTEUR A ACTION P-1 → 1 fuite sur colonne 1 et 1 fuite colorne 2 (configuration ce 1F-1F) → Avec un débit Max pompe égal à 4 o 1/min 3.1 Prédéterminations

- 3.1.1 Schéma_blocs Si on admet le schéma blocs de si-après On a obtenu lors du TP n°1-1 le moa
- $G_{v(p)} = \frac{1}{(1 + \tau_1 \cdot p)(1 + \tau_2 \cdot p)}$ La FT du correcteur de type P. 3.1.2 Fonction de transfert en bO
- Exprimer la FTBO si or phoisit k₁ 2 et $k_1 .Ti = \tau_1$ (Compensation du régime ominant) On notera $k_0 = k_2$ /T

 $\Delta M_{(p)}$ Les valeurs de $Gv_{(p)}$ ont été ubtenues lors du TP n°1.1

ion lement où la sortie ré l'ateur n'est pas

ction de 1

orr .cteur

v(p)

 $\frac{1}{1+\frac{2.\xi_F}{\omega_F}p+\frac{1}{\omega_F}p^2}$

 $\Delta M_{Niv2(p)}$

3.1.3 Fonction de transfert e i BF :

Exprimer la f in de transfert en boucle fermée q l'on mettra sous la inon décomposable ci-contre :

Contrainte imposée :

On souhaite in automotion ne qui réponde en échelon constant avec a d'apassement de l'ordre de 15 Donne au coefficient d'amortion posée par cet e contrainte En déduire la solution : $\rightarrow \omega_F \rightarrow \omega_0 \rightarrow k_2$

3.1.4 Comportement en régime stat que - Ftuc → pre lision statique. → _ `→er l'écart (erreur) statique → Défin, a bande proportionnelle (domain.

saturée, donc inférieure à 100

3.1.5 Réponse à un échelon constant
→ Prédire les caractéristic
dans sa bande proportion

3.1.6 Comportement en sigure no \rightarrow Prédire les caractér sigues de la republic ne excitation sinusoïr de pulsa ion ω_F , notamment le rapport des amplitures et le déphasage.

3.1.7 Réponse à un → xcitation en rampe
→ Prédire les caracte istiques de la réponse à une excitation er manpe ou lite notée V. On exprimera notamment l'erreur de raînage.

Expériment

Lancement du logiciel 🕂 configuration

→ Pour lancer le logicie de contrôle commarde eg552 » cuguer sur l'icône: D_Reg552

→ J ste après chaque ancement du logiciel il est indispensable de lancer la calibration des capteurs de nive au (Par « Infigurer) sis « Calibration capteur MPR....» puis « Démarrer » et en fin de processus

Solution of the second design of the second desi

→ Puis vérifier _____ juration des différentes vannes de fuite ('Cliquer sur le bloc « Configuration »).

3.2 Pour toutes les expérimentations et exploitations → Idem TP 3.1

RESSOURCES

Scheric Street S D CCA E Objet Le logiciel « D CCA » permet le Contrôle et la Comma d'Applications développées pa Didalab dans le domaine des régulations et asservir sements. Le logiciel « D CCA Eval » a deux objectifs : exploitations d'enre 🏷 Evaluer les possibilités du logiciel «🖉 CCA» ments d'essais expérimentaux, préalablement effectués sur les application, « Didalab » et ce, sa **`**ז: ✤ reproduire les exploitations rais expérimentaux et de roto ides développées dans l'ouvrage « Automatique : 🔪 ions et asservissement écrit par 1. Guyénot, ouvrage édités aux éditions « Lavoisier ». Téchargement : www.didalab.fr/ DIDALAB : Mat 's Didact Jues, Enseignement Technique A partir du site : Dans le menu « LE CATALOGUE 🤇 'NL » Cliquer' sur « GENIE ELECTRIQUE » puis su · « Automatique » et enfin sur l'icône de téléchargement : Une version d'évaluation gratuite CC l'Automatique) est téléchargeable sur notre s LE CATALOGUE GENERAL arôle Commande dans le domaine de B GENIE ELECTRIQUE ouvrir tout le potentiel pédagogique de D CCA 🕀 Auto Présentation : 🛅 D, **Jalab** Lavoisie Double Cliquer sur un icone pour Exécuter nécanismes Régulations Electro ique de vae rapide 22 C A Evaluation. \rightarrow Le menu « Livre » ? Aide... icone pour Exécuter. didanb/ Sci Livre Servomécani que de puissance Prototypage rapide **_**.... Exercice 5-1 : Iden, cation expérimentale d'un servo mécanisme i- Time Expérimentation en boucle ouverte du système "IAPV" (F tion en boucle ouverte du système "IAPV" (Ré Question 2 - Réponse à un échelon constant Question 3 - Réponse à une excitation sinusc Thierry Hans - Pierre Guyénot Exercise I : Correction P, I, PI, PD d'un servo-mécanisr xpérimentation en boucle fermée du système "IA Automatique : ce 15-2 : Etude d'une régulation de niveau d'ea régulations et e Réf. ERDOO Expérimentations en boucle ouverte du systèl Expérimentations en boucle fermée du système de Réf. ERD005 asservissements Excercice 16 : Prototypage d'une régulation de t d'ai Expérimentation en boucle ouverte du syste (Réf. ERD540) en vue de (interim Réponse à la question 6 111-1 Réponse aux questions 7 et 8 Réponse aux questions 9 e

Version: 12-2021

