
D
S

P
56

30
0

JT
A

G
 E

xa
m

pl
es

MOTOROLA
Semiconductor Products Sector Application Note

Order Number: AN2074/D
Rev. 0, 11/2000

Contents

1 Test Access Port3
1.1 JTAG Pins.. 3
1.2 TAP Controller 3
1.3 Instruction Register.......................... 5
1.4 Bypass Register 7
1.5 ID Register....................................... 7
1.6 Boundary-Scan Register 7
1.7 TAP Signals Example.................... 10
2 Boundary-Scan Description

Language.................................11
2.1 Entity Description.......................... 11
2.2 Generic Parameter 11
2.3 Logical Port 12
2.4 Pin Mapping 12
2.5 Scan Port Identification 13
2.6 Instruction Register........................ 13
2.7 ID Code Register 14
2.8 Boundary Register 14
3 Programming Examples17
3.1 Test Setup 17
3.2 Entering the Run-Test/Idle State ... 18
3.2.1 JTAG_RTI Subroutine 18
3.2.2 JTAG_EXECUTE Subroutine....... 19
3.3 BYPASS Example......................... 19
3.4 IDCODE Example......................... 21
3.5 HIGHZ Example............................ 24
3.6 SAMPLE/PRELOAD Example..... 25
3.7 CLAMP Example 29
3.8 EXTEST Example 30
3.9 Daisy Chain Example 31
DSP56300 JTAG Examples
Barbara Johnson

IEEE Specification 1149.1 defines a recommended test
architecture with a standard serial interface to permit snapshot
sampling of individual pin signals without requiring a direct
electrical contact (such as that done in a bed-of-nails test
environment). The boundary-scan technique can also be used to
drive specific output signals. This application note gives an
overview of the boundary scan architecture and discusses the
specific implementation of the Test Access Port (TAP) in the
Motorola DSP56300 family of digital signal processors. Example
code is provided to illustrate how to use these test features.

The test architecture uses a boundary-scan cell (BSC) connected
between every I/O pin and the internal device circuitry. The BSCs
interconnect to form a Boundary Scan Register (BSR). The BSR
is one of several data registers that make up the test structure.
When selected by the appropriate TAP controller instruction, the
BSR becomes a serial scan path between a test data input (TDI)
and a test data output (TDO) pin. During normal operation, the
input signals pass freely through the BSCs from the normal data
inputs (NDIs) to the internal circuitry. Similarly, the output
signals pass freely through the BSCs from the internal circuitry to
the normal data outputs (NDOs). However, when the system
enters boundary-test mode, external input test stimuli can be
applied through the NDIs, sampled by the BSCs, and shifted out
to verify a proper electrical connection. Similarly, test values can
be shifted in and applied to the BSCs connected to the NDOs, and
the electrical outputs can be observed through other devices (such
as a logic analyzer or another DSP) to verify a proper electrical
connection for the outputs. Figure 1 shows the BSC block
diagram.

Figure 1. Boundary-Scan Cells

NDI

TDI

BSC BSCDSP Core
NDO

TDO
and Peripherals
© Motorola, Inc. 2000

e
tions,

cified
ming).

ture.
As noted above, the IEEE 1149.1 test structures include several data registers. The architecture also
requires an instruction register. All of the registers are accessed serially through the TAP, and, when
selected, connect between the TDI and TDO pins. Access to the registers is controlled by the TAP
controller, which is a state machine. The state is changed by the Test Mode Select (TMS) signal in
conjunction with the Test Clock (TCK). In the DSP56300 family, the data registers include the following:

• Bypass Register

• Device ID Register

• Boundary Scan Register

• OnCE Registers through the OnCE Command Register (OCR)

After reset, the Instruction Register is loaded with the IDCODE instruction, and the ID Register is th
selected data register. You can perform a data scan to read the device information. For other opera
the TAP programming sequence must begin with a scan into the Instruction Register to specify the
appropriate data register. After an Instruction Register scan, subsequent scans are through the spe
data register and may involve several scans of data into or through it (in the case of OnCE program
Write operations pass data into the registers from TDI. Read operations pass data out of the registers
through TDO. Figure 2 shows the DSP56300 family implementation of the IEEE 1149.1 test architec

Figure 2. Boundary-Scan Architecture

B
S

C
B

S
C

B
S

C

B
S

C
B

S
C

B
S

C

Bypass
Register

TAP

Instruction
Register

ID
Register

OnCE
Registers

Core Logic

Boundary-Scan Register

Input Pins Output Pins

TDI

TMS
TCK

TDO
2 DSP56300 JTAG Examples

TAP Controller

 these

next

ce.

.

erform

ing

1 Test Access Port
The TAP is the external interface for the internal test circuitry specified by IEEE 1149.1. It consists of the
following:

• Five dedicated signal pins

• 16-state TAP controller

• Instruction Register

• Four Data Registers, including:

— Bypass Register (BR)

— Device ID Register (IDR)

— Boundary-Scan Register (BSR)

— OnCE Control Register (OCR), used to access the other OnCE registers

1.1 JTAG Pins
IEEE 1149.1 requires a minimum of four signals to support the TAP. The DSP56300 family supports
signals and the optional reset signal. The supported signals include the following:

• Test Clock (TCK). This input provides a clock signal used to sample the TMS signal and to strobe
data and instructions into the device and to strobe data out of the device.

• Test Mode Select (TMS). This input is used to change the TAP controller state machine to the
processing state. TMS is sampled on the rising edge of TCK and has an internal pull-up resistor.

• Test Data Input (TDI). This input is used to transfer instructions and data serially into the devi
TDI is sampled on the rising edge of TCK and has an internal pull-up resistor.

• Test Data Output (TDO). This output is used to transfer data out of the device serially. TDO
changes on the falling edge of TCK.

• Test Reset (TRST). This input is asserted low to reset the TAP circuitry to a known initial state
TRST is asynchronous to TCK and has an internal pull-up resistor.

1.2 TAP Controller
The TAP controller is a 16-state machine that manages the functions of the test environment and p
the instruction and data transfers. Figure 3 shows the 16-state TAP controller state machine. The state
machine performs three basic actions:

• Do nothing. Test-Logic-Reset or Run-Test/Idle state

• Load a new instruction. Instruction Register scan cycle

• Load new data into a selected data register. Data Register scan cycle

The TAP changes state based on the level of TMS. Transitions from one state to another occur on the ris
edge of TCK. Instructions and data are transferred in through TDI, which is sampled on the rising edge of
TCK, while data is transferred out through TDO, which changes on the falling edge of TCK. This sampling
technique prevents the development of a race condition in the TAP.
DSP56300 JTAG Examples 3

TAP Controller
At power up or during normal operation of the DSP, TRST can be asserted to initialize the test controller.
This immediately places the TAP in the Test-Logic-Reset state. The TAP can also be forced into the
Test-Logic-Reset state by driving TMS high for five TCK cycles. Five TCK cycles are the maximum
number required to transition the TAP to the Test-Logic-Reset state from any of the other states when TMS
is held high. In the Test-Logic-Reset state, the TAP issues an internal reset signal that places all test logic
in a condition that does not impede normal DSP operation. It locks the IDCODE instruction into the
Instruction Register and selects the device ID Register as the default data register at reset.

From the Test-Logic-Reset state, the TAP moves to the Run-Test/Idle state when TMS is pulled low. As
long as TMS is held low, the TAP stays in the Idle state. From this state, driving TMS high moves the TAP
to the data register scan cycle. The TAP cannot remain in the Select-DR-Scan state for more than one TCK
cycle. Driving TMS low for one TCK cycle causes the TAP to begin the data register scan process, moving
to the Capture_DR state. Keeping TMS high for one more TCK cycle moves the TAP to the beginning of
the Instruction Register scan cycle (Select-IR-Scan state).

Figure 3. TAP Controller State Machine

Test-Logic-Reset

Run-Test/Idle Select-DR-Scan

 Capture-DR

 Shift-DR

 Exit1-DR

 Pause-DR

 Exit2-DR

 Update-DR

Select-IR-Scan

 Capture-IR

 Shift-IR

 Exit1-IR

 Pause-IR

 Exit2-IR

 Update-IR

TMS=1

TMS=0

TMS=0

TMS=0

TMS=0

TMS=0

TMS=0
TMS=0 TMS=0

TMS=0TMS=0

TMS=0 TMS=0

TMS=0 TMS=0

TMS=1 TMS=1 TMS=1

TMS=1 TMS=1

TMS=1

TMS=1

TMS=1

TMS=1

TMS=0 TMS=0

TMS=1 TMS=1

TMS=1 TMS=1

TMS=1

TMS=1

Data Register Instruction Register
Scan CycleScan Cycle

TRST=0
4 DSP56300 JTAG Examples

Instruction Register

dule”
After reset, you can read the Device ID Register (default). To perform any other action, you must move the
TAP to the Instruction Register scan cycle to select an appropriate data register. For either type of scan
cycle (data register or instruction register), the first action in the scan cycle is a capture operation. The
Capture-DR state enables the data register indicated by the current Instruction Register contents. The
Capture-IR state enables access to the Instruction Register.

From the Capture state, the TAP transitions either to the Shift or to the Exit1 state. The Shift state allows
test data or a new instruction to be shifted in or status information to be shifted out for inspection.
Following the Shift state, the TAP either returns to the Run-Test/Idle state, via the Exit1 and Update states,
or enters the Pause state, via Exit1. The Pause state allows data shifting through either the selected data
register or Instruction Register to be temporarily suspended while a required operation is performed. From
the Pause state, shifting can resume by re-entering the Shift state via the Exit2 state, or it can be terminated
by entering the Run-Test/Idle state via the Exit2 and Update states.

1.3 Instruction Register
The Instruction Register (IR) is a required register specified in IEEE Standard 1149.1 that must be at least
1 bit long. The DSP56300 family implements a 4-bit IR that decodes the unique instructions shown in
Table 1. As shown in the table, bit combinations that are not used select the Bypass Register by default as
required by the standard. The IR consists of a shift register with four parallel outputs. Data transfers from
the shift register to the parallel outputs during the Update-IR TAP controller state. During a Shift-IR
loading sequence, data can be clocked through the Instruction Register out of TDO to allow instructions to
be passed to any subsequent devices in the JTAG daisy-chain.

During the Capture-IR state, the parallel inputs to the instruction shift register are loaded with 01 in the
least significant bits as required by IEEE Standard 1149.1. The two most significant bits are loaded with
the values of the core status bits OS[1–0] from the OnCE controller. See the “On-Chip Emulation Mo
section of the DSP56300 Family Manual for a description of the status bits. Table 1 summarizes the
Instruction Register encodings. A description of the valid instructions follows the table.

Table 1. DSP56300 JTAG Instructions

B3 B2 B1 B0 Instruction Register Selected

0 0 0 0 EXTEST Boundary-Scan Register

0 0 0 1 SAMPLE/PRELOAD Boundary-Scan Register
0 0 1 0 IDCODE ID Register
0 0 1 1 Not assigned Bypass Register

0 1 0 0 HIGHZ Bypass Register
0 1 0 1 CLAMP Bypass Register
0 1 1 0 ENABLE_ONCE OnCE Register

0 1 1 1 DEBUG_REQUEST OnCE Register
1 0 0 0 Not assigned Bypass Register
1 0 0 1 Not assigned Bypass Register

1 0 1 0 Not assigned Bypass Register
1 0 1 1 Not assigned Bypass Register
1 1 0 0 Not assigned Bypass Register

1 1 0 1 Not assigned Bypass Register
1 1 1 0 Not assigned Bypass Register
1 1 1 1 BYPASS Bypass Register
DSP56300 JTAG Examples 5

Instruction Register
• EXTEST (B[3–0] = 0000). This instruction is required by IEEE Standard 1149.1. EXTEST places
the DSP into an external test mode and connects the BSR between TDI and TDO. The BSR content
drives the external outputs through the output boundary cells beginning with the values inserted
by the previous SAMPLE/PRELOAD instruction and receives external test data via the boundary
inputs. Sets of data can be shifted through the BSR to drive the DSP outputs at various levels and
to sample the concurrent DSP inputs.

• SAMPLE/PRELOAD (B[3–0] = 0001). This instruction is required by IEEE Standard 1149.1.
SAMPLE/PRELOAD allows the DSP to remain in its functional mode and connects the BSR
between TDI and TDO. The BSR can be used to take a snapshot sample of the functional data
leaving the DSP. This instruction can also preload test data into the BSR before loading and
executing an EXTEST or CLAMP instruction.

• IDCODE (B[3–0] = 0010). This optional instruction is specified in IEEE Standard 1149.1.
IDCODE allows the DSP to remain in its functional mode and connects the ID Register between
TDI and TDO. It allows the user to read the manufacturer, part number, and version of a
component from the TAP. This is the default value loaded into the IR at reset.

• HIGHZ (B[3–0] = 0100). This optional instruction is specified in IEEE Standard 1149.1. HIGHZ
sets all DSP outputs to a high impedance state and connects the Bypass Register between TDI and
TDO. While this instruction executes, data shifts through the Bypass Register from TDI to TDO
without affecting the condition of the DSP outputs.

• CLAMP (B[3–0] = 0101). This optional instruction is specified in IEEE Standard 1149.1.
CLAMP sets the outputs of the DSP to logic levels determined by the contents of the BSR,
typically preset by using the SAMPLE/PRELOAD instruction, and connects the Bypass Register
between TDI and TDO. While this instruction executes, data shifts through the Bypass Register
from TDI to TDO without affecting the condition of the DSP outputs.

• ENABLE_ONCE (B[3–0] = 0110). This instruction is not specified in IEEE Standard 1149.1 but
is defined as part of the DSP56300 architecture to provide added debug functionality.
ENABLE_ONCE allows you to perform system debug functions and connects the OnCE Control
Register (OCR) between TDI and TDO. The OCR writes data to and reads data from the other
OnCE registers depending on which OnCE instruction is executed.

• DEBUG_REQUEST (B[3–0] = 0111). This instruction is not specified in IEEE Standard 1149.1
but is defined as part of the DSP56300 architecture to provide added debug functionality.
DEBUG_REQUEST generates a debug request signal to the DSP56300 core. When this
instruction is decoded, the TDI and TDO pins remain connected to the Instruction Register until the
core signals that it has entered Debug mode (indicated by a value of 1101 being shifted out from
the Instruction Register). The external JTAG controller must continue to shift in the
DEBUG_REQUEST instruction while polling the status bits that are shifted out until the system
enters Debug mode. After the acknowledgment of Debug mode is received, the external JTAG
controller must issue the ENABLE_ONCE instruction to allow the user to perform system debug
functions.

• BYPASS (B[3–0] = 1111). This instruction is required by IEEE Standard 1149.1. BYPASS allows
the DSP to remain in its functional mode and connects the Bypass Register between TDI and TDO.
It allows serial data to pass through the DSP from TDI to TDO without affecting the DSP
operation.
6 DSP56300 JTAG Examples

Boundary-Scan Register
1.4 Bypass Register
The Bypass Register provides a single-bit scan path between TDI and TDO. It enhances test efficiency
when a device other than the DSP56300 core-based device becomes the device under test. When the
Bypass Register is selected by the current instruction, the shift register stage is set to a logic 0 on the rising
edge of TCK in the Capture-DR controller state. Therefore, the first bit shifted out after the Bypass Register
is selected is always 0.

1.5 ID Register
The 32-bit ID Register stores values that identify the device manufacturer, part number, and version and is
selected by the IDCODE instruction. It can be used to distinguish specific IEEE 1149.1-compliant parts in
a daisy-chained system. The least significant bit (bit 0) is always set to logic 1, as required by the standard;
this bit is an identity packing bit that indicates valid data. Table 2 summarizes the ID Register.

1.6 Boundary-Scan Register
The Boundary-Scan Register in the DSP56300 devices contain bits for all signal, clock, and control pins.
All bidirectional pins have a single register bit and an associated control bit in the BSR. In the Update-DR
state, the register contains valid stimuli data. In the Capture-DR state, the Boundary-Scan Register samples
data. Data clocked into the device in the Shift-DR state can drive output pins in the subsequent Update-DR
state. At the same time, the clocking action shifts out sampled pin data from the previous Capture-DR state.
As an example of a typical Boundary-Scan Register structure, Table 3 shows the bit definitions for the
DSP56307.

Table 2. ID Register

Bit Description Value

31–28 Version Information 0000 Version 0

27–22 Design Center Number 000110 Motorola Semiconductor Israel

21–17 Core Number 00000 DSP56300

16–12 Chip Derivative Number 00011 DSP56303

11–1 Manufacturer Identity 00000001110 Motorola

0 Pre-set to logic 1 1 Pre-set to logic 1

Table 3. DSP56307 Boundary-Scan Register Bit Definitions

Bit
Number

Pin Name Pin Type Cell Type
Bit

Number
Pin Name Pin Type Cell Type

0 IRQA Input Data 72 RESET Input Data

1 IRQB Input Data 73 HAD0 — Control

2 IRQC Input Data 74 HAD0 Input/Output Data

3 IRQD Input Data 75 HAD1 — Control
DSP56300 JTAG Examples 7

Boundary-Scan Register
4 D23 Input/Output Data 76 HAD1 Input/Output Data

5 D22 Input/Output Data 77 HAD2 — Control

6 D21 Input/Output Data 78 HAD2 Input/Output Data

7 D20 Input/Output Data 79 HAD3 — Control

8 D19 Input/Output Data 80 HAD3 Input/Output Data

9 D18 Input/Output Data 81 HAD4 — Control

10 D17 Input/Output Data 82 HAD4 Input/Output Data

11 D16 Input/Output Data 83 HAD5 — Control

12 D15 Input/Output Data 84 HAD5 Input/Output Data

13 D[23–13] — Control 85 HAD6 — Control

14 D14 Input/Output Data 86 HAD6 Input/Output Data

15 D13 Input/Output Data 87 HAD7 — Control

16 D12 Input/Output Data 88 HAD7 Input/Output Data

17 D11 Input/Output Data 89 HAS/HA0 — Control

18 D10 Input/Output Data 90 HAS/HA0 Input/Output Data

19 D9 Input/Output Data 91 HA8/HA1 — Control

20 D8 Input/Output Data 92 HA8/HA1 Input/Output Data

21 D7 Input/Output Data 93 HA9/HA2 — Control

22 D6 Input/Output Data 94 HA9/HA2 Input/Output Data

23 D5 Input/Output Data 95 HCS/HA10 — Control

24 D4 Input/Output Data 96 HCS/HA10 Input/Output Data

25 D3 Input/Output Data 97 TIO0 — Control

26 D[12–0] — Control 98 TIO0 Input/Output Data

27 D2 Input/Output Data 99 TIO1 — Control

28 D1 Input/Output Data 100 TIO1 Input/Output Data

29 D0 Input/Output Data 101 TIO2 — Control

30 A17 Tri-State Data 102 TIO2 Input/Output Data

31 A16 Tri-State Data 103 HREQ/HTRQ — Control

32 A15 Tri-State Data 104 HREQ/HTRQ Input/Output Data

33 A[17–9] — Control 105 HACK/HRRQ — Control

34 A14 Tri-State Data 106 HACK/HRRQ Input/Output Data

35 A13 Tri-State Data 107 HRW/HRD — Control

36 A12 Tri-State Data 108 HRW/HRD Input/Output Data

37 A11 Tri-State Data 109 HDS/HWR — Control

38 A10 Tri-State Data 110 HDS/HWR Input/Output Data

Table 3. DSP56307 Boundary-Scan Register Bit Definitions (Continued)

Bit
Number

Pin Name Pin Type Cell Type
Bit

Number
Pin Name Pin Type Cell Type
8 DSP56300 JTAG Examples

Boundary-Scan Register
39 A9 Tri-State Data 111 SCK0 — Control

40 A8 Tri-State Data 112 SCK0 Input/Output Data

41 A7 Tri-State Data 113 SCK1 — Control

42 A6 Tri-State Data 114 SCK1 Input/Output Data

43 A[8–0] — Control 115 SCLK — Control

44 A5 Tri-State Data 116 SCLK Input/Output Data

45 A4 Tri-State Data 117 TXD — Control

46 A3 Tri-State Data 118 TXD Input/Output Data

47 A2 Tri-State Data 119 RXD — Control

48 A1 Tri-State Data 120 RXD Input/Output Data

49 A0 Tri-State Data 121 SC00 — Control

50 BG Input Data 122 SC00 Input/Output Data

51 AA0 Tri-State Data 123 SC10 — Control

52 AA1 Tri-State Data 124 SC10 Input/Output Data

53 RD Tri-State Data 125 STD0 — Control

54 WR Tri-State Data 126 STD0 Input/Output Data

55 AA0 — Control 127 SRD0 — Control

56 AA1 — Control 128 SRD0 Input/Output Data

57 BB — Control 129 PINIT Input Data

58 BB Input/Output Data 130 DE — Control

59 BR Output Data 131 DE Input/Output Data

60 TA Input Data 132 SC01 — Control

61 BCLK Tri-State Data 133 SC01 Input/Output Data

62 BCLK Tri-State Data 134 SC02 — Control

63 CLKOUT Output Data 135 SC02 Input/Output Data

64 RD, WR,
BCLK, BG, BR

— Control 136 STD1 — Control

65 CAS — Control 137 STD1 Input/Output Data

66 AA2 — Control 138 SRD1 — Control

67 AA3 — Control 139 SRD1 Input/Output Data

68 EXTAL Input Data 140 SC11 — Control

69 CAS Tri-State Data 141 SC11 Input/Output Data

70 AA2 Tri-State Data 142 SC12 — Control

71 AA3 Tri-State Data 143 SC12 Input/Output Data

Table 3. DSP56307 Boundary-Scan Register Bit Definitions (Continued)

Bit
Number

Pin Name Pin Type Cell Type
Bit

Number
Pin Name Pin Type Cell Type
DSP56300 JTAG Examples 9

TAP Signals Example
1.7 TAP Signals Example
Table 4 describes the signals used in the TAP example and Figure 4 shows a typical sequence of signal
events for loading the BYPASS instruction 1111 into the Instruction Register.

Table 4. TAP Signals Example Description

TCK
Transition

Description

Step 0 Assert TRST.

Steps 1-5 Set TMS to 1 for 5 TCK cycles to enter Test-Logic-Reset state.

Step 6 Set TMS to 0 to enter Run-Test/Idle state.

Step 7 Set TMS to 1 to enter Select-DR state.

Step 8 Set TMS to 1 to enter Select-IR state.

Step 9 Set TMS to 0 to enter Capture-IR state.

Step 10 TDO goes active with undefined data.

Step 11 Set TMS to 0 to enter Shift-IR state.

Step 12 Bit 0 of Instruction Register shifted out on TDO.

Step 13 Bit 0 of new instruction shifted in on TDI.

Step 14 Bit 1 of Instruction Register shifted out on TDO.

Step 15 Bit 1 of new instruction shifted in on TDI.

Step 16 Bit 2 of Instruction Register shifted out on TDO.

Step 17 Bit 2 of new instruction shifted in on TDI.

Step 18 Bit 3 of Instruction Register shifted out on TDO.

Step 19 Bit 3 of new instruction shifted in on TDI. Set TMS to 1 to enter Exit-IR state.

Step 20 Bit 0 of new Instruction Register shifted out on TDO.

Step 21 Set TMS to 1 to enter Update-IR state.

Step 22 TDO goes high impedance.

Step 23 Set TMS to 0 to return to Run-Test/Idle state.
10 DSP56300 JTAG Examples

Generic Parameter
Figure 4. TAP Signals Example

2 Boundary-Scan Description Language
Boundary-Scan Description Language (BSDL) describes how IEEE 1149.1 is implemented in a device and
how the device operates. A BSDL description for a device consists of an entity description, a generic
parameter, a logical port description, pin mapping, a scan port identification, an Instruction Register
description, an ID code description, and a Boundary Register description. BSDL files for the DSP56300
family can be downloaded from: http://www.mot.com/SPS/DSP/documentation/DSP56300.html

2.1 Entity Description
The entity description gives the name of the device. It begins with an entity statement and terminates with
an end statement. Example 1 shows the DSP56307 entity description.

Example 1. Entity Description

entity DSP56307 is
...
end DSP56307;

2.2 Generic Parameter
A generic parameter is a parameter that can come from outside the entity, or it can be defaulted such as the
package type. Example 2 shows the 196-pin PBGA DSP56307 generic parameter.

Example 2. Generic Parameter

generic (PHYSICAL_PIN_MAP : string := "PBGA196");

TCK

9

TRST

TDI

TMS

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 230

10 12 14 16 18 20 22

TDO
DSP56300 JTAG Examples 11

Pin Mapping
2.3 Logical Port
The logical port description gives logical names to the I/O pins and specifies whether the signals are input,
output, bidirectional, or linkage (power supply). Example 3 shows the DSP56307 logical port description.

Example 3. Logical Port Description

port (DE_N: inout bit;
SC02: inout bit;
SC01: inout bit;
...
MODD: in bit;
MODC: in bit;
...
D: inout bit_vector(0 to 23);
A: out bit_vector(0 to 17);
...
DVCC: linkage bit_vector(0 to 3);
AVCC: linkage bit_vector(0 to 2);
...

2.4 Pin Mapping
Example 4 maps logical signals to the physical pins of the 196-pin PBGA DSP56307 package.

Example 4. Pin Mapping

attribute PIN_MAP of DSP56307 : entity is PHYSICAL_PIN_MAP;
constant PBGA196 : PIN_MAP_STRING :=
"RESERVED: (A1, A14, B14, P1, P14), " &
"SC11: A2, " &
"TMS: A3, " &
"TDO: A4, " &
"MODB: A5, " &
"D: (E14, D12, D13, C13, C14, B13, C12, A13, B12, A12, B11, A11, C10, B10, A10, B9, " &
"A9, B8, C8, A8, B7, B6, C6, A6), " &
"DVCC: (A7, C9, C11, D14), " &
"SRD1: B1, " &
"SC12: B2, " &
"TDI: B3, " &
"TRST_N: B4, " &
"MODD: B5, " &
"SC02: C1, " &
"STD1: C2, " &
"TCK: C3, " &
"MODA: C4, " &
"MODC: C5, " &
"QVCCL: (C7, G13, H2, N9), " &
"PINIT: D1, " &
"SC01: D2, " &
"DE_N: D3, " &
"GND: (E8, E9, E10, E11, F4, F5, F11, G4, G5, G6, G7, G8, G9, G10, G11, H4, H5, H6, " &
"H7, H8, H9, H10, H11, J4, J5, J6, J7, J8, J9, J10, J11, K4, K5, K6, K7, K8, K9, " &
"K10, K11, L4, L5, L6, L7, L8, L9, L10, L11, D4, D5, D6, D7, D8, D9, D10, D11, E4, " &
"E5, E6, E7, F6, F7, F8, F9, F10), " &
"STD0: E1, " &
"SVCC: (E2, K1), " &
"SRD0: E3, " &
"A: (N14, M13, M14, L13, L14, K13, K14, J13, J12, J14, H13, H14, G14, G12, F13, F14, " &
"E13, E12), " &
"RXD: F1, " &
"SC10: F2, " &
12 DSP56300 JTAG Examples

Instruction Register
"SC00: F3, " &
"QVCCH: (F12, H1, M7), " &
"SCK1: G1, " &
"SCLK: G2, " &
"TXD: G3, " &
"SCK0: H3, " &
"AVCC: (H12, K12, L12), " &
"HACK: J1, " &
"HRW: J2, " &
"HDS: J3, " &
"HREQ: K2, " &
"TIO2: K3, " &
"HCS: L1, " &
"TIO1: L2, " &
"TIO0: L3, " &
"HA8: M1, " &
"HA9: M2, " &
"HAS: M3, " &
"HVCC: M4, " &
"HAD: (M5, P4, N4, P3, N3, P2, N1, N2), " &
"PVCC: M6, " &
"EXTAL: M8, " &
"CLKOUT: M9, " &
"BCLK_N: M10, " &
"WR_N: M11, " &
"RD_N: M12, " &
"RESET_N: N5, " &
"PGND: N6, " &
"AA: (N13, P12, P7, N7), " &
"CAS_N: N8, " &
"BCLK: N10, " &
"BR_N: N11, " &
"CVCC: (N12, P9), " &
"PCAP: P5, " &
"PGND1: P6, " &
"XTAL: P8, " &
"TA_N: P10, " &
"BB_N: P11, " &
"BG_N: P13 ";

2.5 Scan Port Identification
The scan port identification statements define the device TAP. Example 5 shows the DSP56307 scan
port identification.

Example 5. Scan Port Identification

attribute TAP_SCAN_IN of TDI : signal is true;
attribute TAP_SCAN_OUT of TDO : signal is true;
attribute TAP_SCAN_MODE of TMS : signal is true;
attribute TAP_SCAN_RESET of TRST_N : signal is true;
attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, BOTH);

2.6 Instruction Register
The Instruction Register description identifies the device-dependent characteristics of the
identification register. Example 6 shows the DSP56307 Instruction Register description. The
Instruction Register description defines the Instruction Register length as 4 bits and gives the
DSP56300 JTAG Examples 13

Boundary Register
instruction opcode definitions. It also defines that in the Capture-IR state, the parallel inputs to the
instruction shift register are loaded with 01 in the least significant bits.

Example 6. Instruction Register Description

attribute INSTRUCTION_LENGTH of DSP56307 : entity is 4;
attribute INSTRUCTION_OPCODE of DSP56307 : entity is
"EXTEST (0000)," &
"SAMPLE (0001)," &
"IDCODE (0010)," &
"CLAMP (0101)," &
"HIGHZ (0100)," &
"ENABLE_ONCE (0110)," &
"DEBUG_REQUEST (0111)," &
"BYPASS (1111)";
attribute INSTRUCTION_CAPTURE of DSP56307 : entity is "0001";

2.7 ID Code Register
The ID code register description identifies the values captured in the device identification register when
the IDCODE instruction is executed. Example 7 shows the DSP56307 ID code register description.

Example 7. ID Code Register Description

attribute IDCODE_REGISTER of DSP56307 : entity is
"0000" & -- version
"000110" & -- manufacturer’s use
"0000000111" & -- sequence number
"00000001110" & -- manufacturer identity
"1"; -- 1149.1 requirement

2.8 Boundary Register
The Boundary Register description lists the boundary-scan cells and gives information regarding the cell
type and associated control. Example 8 shows the DSP56307 boundary scan description. The Boundary
Register description defines the Boundary-Scan Register length as 144 bits and gives the instruction
opcode definitions

Example 8. Boundary Scan Description

attribute BOUNDARY_LENGTH of DSP56307 : entity is 144;
attribute BOUNDARY_REGISTER of DSP56307 : entity is
-- num cell port func safe [ccell dis rslt]
"0 (BC_1, MODA, input, X)," &
"1 (BC_1, MODB, input, X)," &
"2 (BC_1, MODC, input, X)," &
"3 (BC_1, MODD, input, X)," &
"4 (BC_6, D(23), bidir, X, 13, 1, Z)," &
"5 (BC_6, D(22), bidir, X, 13, 1, Z)," &
"6 (BC_6, D(21), bidir, X, 13, 1, Z)," &
"7 (BC_6, D(20), bidir, X, 13, 1, Z)," &
"8 (BC_6, D(19), bidir, X, 13, 1, Z)," &
"9 (BC_6, D(18), bidir, X, 13, 1, Z)," &
"10 (BC_6, D(17), bidir, X, 13, 1, Z)," &
"11 (BC_6, D(16), bidir, X, 13, 1, Z)," &
"12 (BC_6, D(15), bidir, X, 13, 1, Z)," &
"13 (BC_1, *, control, 1)," &
"14 (BC_6, D(14), bidir, X, 13, 1, Z)," &
"15 (BC_6, D(13), bidir, X, 13, 1, Z)," &
14 DSP56300 JTAG Examples

Boundary Register
"16 (BC_6, D(12), bidir, X, 13, 1, Z)," &
"17 (BC_6, D(11), bidir, X, 26, 1, Z)," &
"18 (BC_6, D(10), bidir, X, 26, 1, Z)," &
"19 (BC_6, D(9), bidir, X, 26, 1, Z)," &
-- num cell port func safe [ccell dis rslt]
"20 (BC_6, D(8), bidir, X, 26, 1, Z)," &
"21 (BC_6, D(7), bidir, X, 26, 1, Z)," &
"22 (BC_6, D(6), bidir, X, 26, 1, Z)," &
"23 (BC_6, D(5), bidir, X, 26, 1, Z)," &
"24 (BC_6, D(4), bidir, X, 26, 1, Z)," &
"25 (BC_6, D(3), bidir, X, 26, 1, Z)," &
"26 (BC_1, *, control, 1)," &
"27 (BC_6, D(2), bidir, X, 26, 1, Z)," &
"28 (BC_6, D(1), bidir, X, 26, 1, Z)," &
"29 (BC_6, D(0), bidir, X, 26, 1, Z)," &
"30 (BC_1, A(17), output3, X, 33, 1, Z)," &
"31 (BC_1, A(16), output3, X, 33, 1, Z)," &
"32 (BC_1, A(15), output3, X, 33, 1, Z)," &
"33 (BC_1, *, control, 1)," &
"34 (BC_1, A(14), output3, X, 33, 1, Z)," &
"35 (BC_1, A(13), output3, X, 33, 1, Z)," &
"36 (BC_1, A(12), output3, X, 33, 1, Z)," &
"37 (BC_1, A(11), output3, X, 33, 1, Z)," &
"38 (BC_1, A(10), output3, X, 33, 1, Z)," &
"39 (BC_1, A(9), output3, X, 33, 1, Z)," &
-- num cell port func safe [ccell dis rslt]
"40 (BC_1, A(8), output3, X, 43, 1, Z)," &
"41 (BC_1, A(7), output3, X, 43, 1, Z)," &
"42 (BC_1, A(6), output3, X, 43, 1, Z)," &
"43 (BC_1, *, control, 1)," &
"44 (BC_1, A(5), output3, X, 43, 1, Z)," &
"45 (BC_1, A(4), output3, X, 43, 1, Z)," &
"46 (BC_1, A(3), output3, X, 43, 1, Z)," &
"47 (BC_1, A(2), output3, X, 43, 1, Z)," &
"48 (BC_1, A(1), output3, X, 43, 1, Z)," &
"49 (BC_1, A(0), output3, X, 43, 1, Z)," &
"50 (BC_1, BG_N, input, X)," &
"51 (BC_1, AA(0), output3, X, 55, 1, Z)," &
"52 (BC_1, AA(1), output3, X, 56, 1, Z)," &
"53 (BC_1, RD_N, output3, X, 64, 1, Z)," &
"54 (BC_1, WR_N, output3, X, 64, 1, Z)," &
"55 (BC_1, *, control, 1)," &
"56 (BC_1, *, control, 1)," &
"57 (BC_1, *, control, 1)," &
"58 (BC_6, BB_N, bidir, X, 57, 1, Z)," &
"59 (BC_1, BR_N, output2, X)," &
-- num cell port func safe [ccell dis rslt]
"60 (BC_1, TA_N, input, X)," &
"61 (BC_1, BCLK_N, output3, X, 64, 1, Z)," &
"62 (BC_1, BCLK, output3, X, 64, 1, Z)," &
"63 (BC_1, CLKOUT, output2, X)," &
"64 (BC_1, *, control, 1)," &
"65 (BC_1, *, control, 1)," &
"66 (BC_1, *, control, 1)," &
"67 (BC_1, *, control, 1)," &
"68 (BC_1, EXTAL, input, X)," &
"69 (BC_1, CAS_N, output3, X, 65, 1, Z)," &
"70 (BC_1, AA(2), output3, X, 66, 1, Z)," &
"71 (BC_1, AA(3), output3, X, 67, 1, Z)," &
"72 (BC_1, RESET_N, input, X)," &
"73 (BC_1, *, control, 1)," &
"74 (BC_6, HAD(0), bidir, X, 73, 1, Z)," &
"75 (BC_1, *, control, 1)," &
DSP56300 JTAG Examples 15

Boundary Register
"76 (BC_6, HAD(1), bidir, X, 75, 1, Z)," &
"77 (BC_1, *, control, 1)," &
"78 (BC_6, HAD(2), bidir, X, 77, 1, Z)," &
"79 (BC_1, *, control, 1)," &
-- num cell port func safe [ccell dis rslt]
"80 (BC_6, HAD(3), bidir, X, 79, 1, Z)," &
"81 (BC_1, *, control, 1)," &
"82 (BC_6, HAD(4), bidir, X, 81, 1, Z)," &
"83 (BC_1, *, control, 1)," &
"84 (BC_6, HAD(5), bidir, X, 83, 1, Z)," &
"85 (BC_1, *, control, 1)," &
"86 (BC_6, HAD(6), bidir, X, 85, 1, Z)," &
"87 (BC_1, *, control, 1)," &
"88 (BC_6, HAD(7), bidir, X, 87, 1, Z)," &
"89 (BC_1, *, control, 1)," &
"90 (BC_6, HAS, bidir, X, 89, 1, Z)," &
"91 (BC_1, *, control, 1)," &
"92 (BC_6, HA8, bidir, X, 91, 1, Z)," &
"93 (BC_1, *, control, 1)," &
"94 (BC_6, HA9, bidir, X, 93, 1, Z)," &
"95 (BC_1, *, control, 1)," &
"96 (BC_6, HCS, bidir, X, 95, 1, Z)," &
"97 (BC_1, *, control, 1)," &
"98 (BC_6, TIO0, bidir, X, 97, 1, Z)," &
"99 (BC_1, *, control, 1)," &
-- num cell port func safe [ccell dis rslt]
"100 (BC_6, TIO1, bidir, X, 99, 1, Z)," &
"101 (BC_1, *, control, 1)," &
"102 (BC_6, TIO2, bidir, X, 101, 1, Z)," &
"103 (BC_1, *, control, 1)," &
"104 (BC_6, HREQ, bidir, X, 103, 1, Z)," &
"105 (BC_1, *, control, 1)," &
"106 (BC_6, HACK, bidir, X, 105, 1, Z)," &
"107 (BC_1, *, control, 1)," &
"108 (BC_6, HRW, bidir, X, 107, 1, Z)," &
"109 (BC_1, *, control, 1)," &
"110 (BC_6, HDS, bidir, X, 109, 1, Z)," &
"111 (BC_1, *, control, 1)," &
"112 (BC_6, SCK0, bidir, X, 111, 1, Z)," &
"113 (BC_1, *, control, 1)," &
"114 (BC_6, SCK1, bidir, X, 113, 1, Z)," &
"115 (BC_1, *, control, 1)," &
"116 (BC_6, SCLK, bidir, X, 115, 1, Z)," &
"117 (BC_1, *, control, 1)," &
"118 (BC_6, TXD, bidir, X, 117, 1, Z)," &
"119 (BC_1, *, control, 1)," &
-- num cell port func safe [ccell dis rslt]
"120 (BC_6, RXD, bidir, X, 119, 1, Z)," &
"121 (BC_1, *, control, 1)," &
"122 (BC_6, SC00, bidir, X, 121, 1, Z)," &
"123 (BC_1, *, control, 1)," &
"124 (BC_6, SC10, bidir, X, 123, 1, Z)," &
"125 (BC_1, *, control, 1)," &
"126 (BC_6, STD0, bidir, X, 125, 1, Z)," &
"127 (BC_1, *, control, 1)," &
"128 (BC_6, SRD0, bidir, X, 127, 1, Z)," &
"129 (BC_1, PINIT, input, X)," &
"130 (BC_1, *, control, 1)," &
"131 (BC_6, DE_N, bidir, X, 130, 1, Pull1)," &
"132 (BC_1, *, control, 1)," &
"133 (BC_6, SC01, bidir, X, 132, 1, Z)," &
"134 (BC_1, *, control, 1)," &
"135 (BC_6, SC02, bidir, X, 134, 1, Z)," &
16 DSP56300 JTAG Examples

Test Setup

CE
e logic
"136 (BC_1, *, control, 1)," &
"137 (BC_6, STD1, bidir, X, 136, 1, Z)," &
"138 (BC_1, *, control, 1)," &
"139 (BC_6, SRD1, bidir, X, 138, 1, Z)," &
-- num cell port func safe [ccell dis rslt]
"140 (BC_1, *, control, 1)," &
"141 (BC_6, SC11, bidir, X, 140, 1, Z)," &
"142 (BC_1, *, control, 1)," &
"143 (BC_6, SC12, bidir, X, 142, 1, Z)";

3 Programming Examples
This section gives examples of how the DSP implements the TAP instructions. A DSP56303EVM acts as a
TAP bus master device by sending TAP instructions to the target DSP56307EVM.

3.1 Test Setup
The test described here uses the following setup:

• Target DSP: DSP56307EVM

• TAP bus master: DSP56303EVM

• PC with Motorola DSP56300 software development tools

• Logic analyzer

The software that exercises the TAP is downloaded from the PC to the DSP56307 via the JTAG/On
port. The DSP56303 acts as an external bus master by controlling the signals to the DSP56307. Th
analyzer examines the relative timing of the signals. Figure 5 shows this connection.

Figure 5. Test Setup

RESET
TRST
TCK
TMS
TDI

TDO
DE

GPIO

DSP56307 DSP56303

PC with

JTAG/OnCE Port

Logic Analyzer

GPIO
GPIO
GPIO
GPIO
GPIO
GPIO

TAP Bus MasterTarget DSP

DSP56300 Tools
DSP56300 JTAG Examples 17

Entering the Run-Test/Idle State
3.2 Entering the Run-Test/Idle State
The TAP controller must be initialized into the Test-Logic-Reset state to keep the test logic transparent to
the DSP56300 system logic. This operation is done by performing one of the following after power-up:

• Asserting TRST

• Sampling TMS as a logical 1 for five consecutive TCK rising edges

The subroutine JTAG_RTI shown in Example 9 and described in Section 3.2.1 forces the TAP to enter
the Test-Logic-Reset state (by asserting TMS for five TCK cycles) and then moves to the Run-Test/Idle
state (by deasserting TMS).

Example 9. Entering Run-Test/Idle Routine

org x:
JTAG_RTI_SEQ:

dc $30 ; go to next state
dc $30 ; go to next state
dc $30 ; go to next state
dc $30 ; go to next state
dc $30 ; go to next state
dc $10 ; go to Run-Test-Idle
dc $00 ; EXIT

org p:$100
START

...
jsr JTAG_RTI
...

JTAG_RTI:
 move #JTAG_RTI_SEQ,r0

jsr JTAG_EXECUTE
rts

3.2.1 JTAG_RTI Subroutine
The JTAG_RTI subroutine sends a sequence of 8-bit data to the JTAG_EXECUTE subroutine. The bit
definitions are as Table 5 shows:

For example, a value of $30 (bit 5 = 1 and bit 4 = 1) indicates that TMS = 1 and TDI = 1 are sent on the
rising edge of TCK. Since bit 2 = 0, TDO is not read on the falling edge of TCK. Thus, JTAG_RTI sends a
value $30 five times to enter the Test-Reset-Logic state and then sends a value of $10 (TMS = 0, TDI =1,
TDO is not read) to enter the Run-Test/Idle state.

Table 5. Subroutine Sequence Bit Definitions

7-6 5 4 3 2 1-0

Reserved TMS to send TDI to send Reserved Read TDO Reserved
18 DSP56300 JTAG Examples

BYPASS Example
3.2.2 JTAG_EXECUTE Subroutine
The JTAG_EXECUTE subroutine performs the operations necessary to emulate the JTAG/OnCE
operation. When the JTAG_RTI sends an 8-bit item of data, the JTAG_EXECUTE first determines if bit 2
is set to indicate that TDO needs to be read. The data shifted out on TDO is shifted into accumulator b.
Next, the JTAG_EXECUTE subroutine determines the value of bit 5 and sets or clears the TMS value
accordingly. Then, the subroutine determines the value of bit 4 and sets or clears TDI value accordingly.
The TCK signal is then toggled to send the values to the target DSP. The JTAG_EXECUTE routine repeats
until an exit value of $00 is encountered. The TDO output is stored in internal memory location
x:JTAG_OUT.

Example 10. JTAG Bit-Banging Routine

JTAG_EXECUTE:
move x:(r0)+,a1
tst a
beq done
move a1,x:JTAG_INSTR
brclr #DATA_RD,x:JTAG_INSTR,no_read_TDO

read_TDO
brclr #TDO_BIT,x:M_PDRD,TDO_CLR

TDO_SET
move #>1,a
bra shift

TDO_CLR
move #>0,a

shift
 lsr a

ror b
no_read_TDO

brclr #DATA_TMS,x:JTAG_INSTR,TMS_CLR
TMS_SET

bset #TMS_BIT,x:M_PDRD
bra >cont1

TMS_CLR
bclr #TMS_BIT,x:M_PDRD

cont1
brclr #DATA_TDI,x:JTAG_INSTR,TDI_CLR

TDI_SET
bset #TDI_BIT,x:M_PDRD
bra >cont2

TDI_CLR
bclr #TDI_BIT,x:M_PDRD

cont2
bset #TCK_BIT,x:M_PDRD
rep #3
nop
bclr #TCK_BIT,x:M_PDRD
bra >JTAG_EXECUTE

done
move b1,x:JTAG_OUT
clr b
rts

3.3 BYPASS Example
The BYPASS example shows how this instruction is executed. The Select-IR scan path is selected to shift
in the BYPASS instruction by sending 1111 on TDI. Next, the Select-DR scan path is selected to shift in
the data $c0ffee on TDI. Since the BYPASS instruction allows serial data to be transferred from TDI to
DSP56300 JTAG Examples 19

BYPASS Example
TDO, data shifted out on TDO is the same as the data shifted in on TDI in the previous Shift-DR state.
Notice that when the least significant bit of data is shifted in, the output data is undefined. The least
significant bit is not shifted out until the next TCK cycle when Shift-DR is entered again. Similarly, the
most significant bit is shifted out when the Exit-DR state is entered. Table 6 lists the instructions used in
Example 11.

Example 11. BYPASS Example

org x:
JTAG_BYPASS_SEQ:

dc $30 ; go to Select DR
dc $30 ; go to Select IR
dc $10 ; go to Capture IR
dc $10 ; go to Shift IR
dc $14 ; go to Shift IR - TDI=1
dc $14 ; go to Shift IR - TDI=1
dc $14 ; go to Shift IR - TDI=1
dc $34 ; go to Exit IR - TDI=1
dc $30 ; go to Update IR
dc $30 ; go to Select DR
dc $10 ; go to Capture DR
dc $10 ; go to Shift DR

dc $04 ; go to Shift DR - TDI=0 TDO=x
dc $14 ; go to Shift DR - TDI=1 TDO=0
dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=1

dc $04 ; go to Shift DR - TDI=0 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=0
dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=1

dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=1

dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=1

Table 6. BYPASS Example Instructions

B3 B2 B1 B0 Instruction Register Selected

0 0 0 0 EXTEST Boundary-Scan Register

0 0 0 1 SAMPLE/PRELOAD Boundary-Scan Register

0 0 1 0 IDCODE ID Register

0 1 0 1 CLAMP Bypass

0 1 0 0 HIGHZ Bypass

0 1 1 0 ENABLE_ONCE OnCE Register

0 1 1 1 DEBUG_REQUEST OnCE Register

1 1 1 1 BYPASS Bypass
20 DSP56300 JTAG Examples

IDCODE Example
dc $04 ; go to Shift DR - TDI=0 TDO=1
dc $04 ; go to Shift DR - TDI=0 TDO=0
dc $04 ; go to Shift DR - TDI=0 TDO=0
dc $04 ; go to Shift DR - TDI=0 TDO=0

dc $04 ; go to Shift DR - TDI=0 TDO=0
dc $04 ; go to Shift DR - TDI=0 TDO=0
dc $14 ; go to Shift DR - TDI=1 TDO=0
dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $30 ; go to Exit DR - TDI=x TDO=1

dc $34 ; go to Update DR
dc $10 ; go to Run-Test-Idle
dc $00 ; EXIT

org p:$100

START
...
jsr JTAG_RTI
jsr JTAG_BYPASS
debug

JTAG_BYPASS:
 move #JTAG_BYPASS_SEQ,r0

jsr JTAG_EXECUTE
rts

3.4 IDCODE Example
The IDCODE example shows how the instruction is executed. The Select-IR scan path is selected to shift
in the IDCODE instruction by sending 0010 on TDI. Next, the Select-DR scan path is selected to shift out
the contents of the ID Register on TDO. The 32-bit data is stored in x:JTAG_OUT and x:JTAG_OUT+1.
The most significant byte is stored in the low byte of x:JTAG_OUT, and the lower 24 bits are stored in
x:JTAG_OUT+1 as shown in Table 8. The JTAG_EXECUTE subroutine is modified so that when 24 bits
are shifted out, they are stored in x:JTAG_OUT+1. Subsequent data is stored in x:JTAG_OUT. Table 7
describes the instructions used in Figure 12.

Table 7. IDCODE Instruction Example

B3 B2 B1 B0 Instruction Register Selected

0 0 0 0 EXTEST Boundary-Scan Register

0 0 0 1 SAMPLE/PRELOAD Boundary-Scan Register

0 0 1 0 IDCODE ID Register

0 1 0 1 CLAMP Bypass

0 1 0 0 HIGHZ Bypass

0 1 1 0 ENABLE_ONCE OnCE Register

0 1 1 1 DEBUG_REQUEST OnCE Register

1 1 1 1 BYPASS Bypass
DSP56300 JTAG Examples 21

IDCODE Example
The DSP56307 ID Register contains $0180701D. Other DSP56300 derivatives change bits 16–12.

Example 12. IDCODE Example

org x:

JTAG_ID_SEQ:
dc $30 ; go to Select DR
dc $30 ; go to Select IR
dc $10 ; go to Capture IR
dc $10 ; go to Shift IR
dc $04 ; go to Shift IR - 0
dc $14 ; go to Shift IR - 1
dc $04 ; go to Shift IR - 0
dc $24 ; go to Exit IR - 0
dc $30 ; go to Update IR
dc $30 ; go to Select DR
dc $10 ; go to Capture DR
dc $10 ; go to Shift DR
dc $04 ; go to Shift DR - lsb of data out
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR - msb of data out
dc $04 ; go to Shift DR - lsb of data out
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR

Table 8. DSP56307 IDCODE Output

x:JTAG_OUT x:JTAG_OUT+1

ID Register
Bits 31–24

$01

ID Register
Bits 23–0
$80701D

Table 9. DSP56307 IDCODE Output Description

Bit Description Value

31–28 Version Information 0000 Version 0

27–22 Design Center Number 000110 Motorola Semiconductor Israel

21–17 Core Number 00000 DSP56300

16–12 Chip Derivative Number 00111 DSP56307

11–1 Manufacturer Identity 00000001110 Motorola

0 IEEE 1149.1 Requirement 1 Fixed logic 1
22 DSP56300 JTAG Examples

IDCODE Example
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR - msb of data out
dc $04 ; go to Shift DR - lsb of data out
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $84 ; go to Shift DR - msb of data out
dc $04 ; go to Shift DR - lsb of data out
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $04 ; go to Shift DR
dc $24 ; go to Exit DR - msb of data out
dc $30 ; go to Update DR
dc $10 ; go to Run-Test-Idle
dc $00 ; EXIT

org p:$100

START
jsr JTAG_RTI
jsr JTAG_IDCODE
debug

JTAG_IDCODE:
 move #JTAG_ID_SEQ,r0

jsr JTAG_EXECUTE
rts

JTAG_EXECUTE:
move x:(r0)+,a1
tst a
beq done
move a1,x:JTAG_INSTR
brclr #DATA_RD,x:JTAG_INSTR,no_read

read_TDO
brclr #TDO_BIT,x:M_PDRD,TDO_CLR

TDO_SET
move #>1,a
bra shift

TDO_CLR
move #>0,a

shift
 lsr a

ror b
no_read

brclr #DATA_TMS,x:JTAG_INSTR,TMS_CLR
TMS_SET

bset #TMS_BIT,x:M_PDRD
bra >cont1

TMS_CLR
bclr #TMS_BIT,x:M_PDRD

cont1
brclr #DATA_TDI,x:JTAG_INSTR,TDI_CLR

TDI_SET
bset #TDI_BIT,x:M_PDRD
bra >cont2
DSP56300 JTAG Examples 23

HIGHZ Example
TDI_CLR
bclr #TDI_BIT,x:M_PDRD

cont2
bset #TCK_BIT,x:M_PDRD
rep #3
nop
bclr #TCK_BIT,x:M_PDRD
brclr #COUNT24,x:JTAG_INSTR,not24bits
move b1,x:(r1)-
clr b

not24bits
bra >JTAG_EXECUTE

done
lsr #16,b
nop
move b1,x:(r1)-
clr b
rts

3.5 HIGHZ Example
The HIGHZ example shows how the HIGHZ instruction is executed. The Select-IR scan path shifts in the
HIGHZ instruction by sending 0100 on TDI. The DSP outputs are placed in high-impedance state. Next,
the Select-DR scan path is selected to shift in the data $c0ffee on TDI. Since the Bypass Register is
connected between TDI and TDO, the data shifted in is also shifted out and the output is stored in
x:JTAG_OUT. One way to verify that the output pins are tri-stated is to monitor the CLKOUT pin. After
the HIGHZ instruction executes, CLKOUT should be in high-impedance state instead of producing a clock
signal. Table 10 describes the instructions used in Example 13.

Example 13. HIGHZ Example

org x:
JTAG_HIGHZ_SEQ:

dc $30 ; go to Select DR
dc $30 ; go to Select IR
dc $10 ; go to Capture IR
dc $10 ; go to Shift IR
dc $04 ; go to Shift IR - TDI=0
dc $04 ; go to Shift IR - TDI=0
dc $14 ; go to Shift IR - TDI=1
dc $24 ; go to Exit IR - TDI=0

Table 10. HIGHZ Example Instructions

B3 B2 B1 B0 Instruction Register Selected

0 0 0 0 EXTEST Boundary-Scan Register

0 0 0 1 SAMPLE/PRELOAD Boundary-Scan Register

0 0 1 0 IDCODE ID Register

0 1 0 0 HIGHZ Bypass

0 1 0 1 CLAMP Bypass

0 1 1 0 ENABLE_ONCE OnCE Register

0 1 1 1 DEBUG_REQUEST OnCE Register

1 1 1 1 BYPASS Bypass
24 DSP56300 JTAG Examples

SAMPLE/PRELOAD Example
dc $30 ; go to Update IR
dc $30 ; go to Select DR
dc $10 ; go to Capture DR
dc $10 ; go to Shift DR

dc $04 ; go to Shift DR - TDI=0 TDO=x
dc $14 ; go to Shift DR - TDI=1 TDO=0
dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=1

dc $04 ; go to Shift DR - TDI=0 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=0
dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=1

dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=1

dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $14 ; go to Shift DR - TDI=1 TDO=1

dc $04 ; go to Shift DR - TDI=0 TDO=1
dc $04 ; go to Shift DR - TDI=0 TDO=0
dc $04 ; go to Shift DR - TDI=0 TDO=0
dc $04 ; go to Shift DR - TDI=0 TDO=0

dc $04 ; go to Shift DR - TDI=0 TDO=0
dc $04 ; go to Shift DR - TDI=0 TDO=0
dc $14 ; go to Shift DR - TDI=1 TDO=0
dc $14 ; go to Shift DR - TDI=1 TDO=1
dc $30 ; go to Exit DR - TDI=x TDO=1

dc $34 ; go to Update DR
dc $10 ; go to Run-Test-Idle
dc $00 ; EXIT

org p:$100

START
...
jsr JTAG_RTI
jsr JTAG_HIGHZ
debug

JTAG_HIGHZ:
 move #JTAG_HIGHZ_SEQ,r0

jsr JTAG_EXECUTE
rts

3.6 SAMPLE/PRELOAD Example
The example discussed in this section shows how the SAMPLE/PRELOAD instruction is executed. The
Select-IR scan path is selected to shift in the SAMPLE/PRELOAD instruction by sending 0001 on TDI.
Next, the Select-DR scan path is selected to shift in the 144-bit data on TDI. The JTAG_SAMPLE subroutine
preloads this 144-bit value into the boundary scan register so that the signals AA1, AA2, CAS, and A[3–0]
are set to logic 1 and that A[17–4] are set to logic 0. The 144-bit sampled data is shifted out on TDO. This
DSP56300 JTAG Examples 25

SAMPLE/PRELOAD Example

data reflects the sampled data on the DSP pins. Output data is stored in six memory locations
x:JTAG_OUT..x:JTAG_OUT+5. The most significant word is stored in x:JTAG_OUT and the least
significant word is stored in x:JTAG_OUT+5.

One way to verify that the sampled output data is correct is to compare the settings of the MODD–MODA
pins to the sampled output data. For example, if the DSP is set to Boot Mode 9 (MODD = 1, MODC = 0,
MODB = 0, MODA = 1), bits 3–0 of the sampled output data should have a value of 9, since
MODD–MODA are in bits 3–0 of the boundary scan register. Table 11 describes the instructions used in
Example 14.

Example 14. SAMPLE/PRELOAD Example

JTAG_SAMPLE_SEQ:
dc $30 ; go to Select DR
dc $30 ; go to Select IR
dc $10 ; go to Capture IR
dc $10 ; go to Shift IR
dc $14 ; go to Shift IR - 1
dc $04 ; go to Shift IR - 0
dc $04 ; go to Shift IR - 0
dc $24 ; go to Exit IR - 0
dc $30 ; go to Update IR
dc $30 ; go to Select DR
dc $10 ; go to Capture DR
dc $10 ; go to Shift DR

dc $04 ; go to Shift DR - lsb of data out MODA
dc $04 ; go to Shift DR MODB
dc $04 ; go to Shift DR MODC
dc $04 ; go to Shift DR MODD
dc $04 ; go to Shift DR D23
dc $04 ; go to Shift DR D22
dc $04 ; go to Shift DR D21
dc $04 ; go to Shift DR - msb of data outD20
dc $04 ; go to Shift DR - lsb of data outD19
dc $04 ; go to Shift DR D18
dc $04 ; go to Shift DR D17
dc $04 ; go to Shift DR D16
dc $04 ; go to Shift DR D15
dc $04 ; go to Shift DR ctrl D23:D12
dc $04 ; go to Shift DR D14
dc $04 ; go to Shift DR - msb of data outD13

Table 11. SAMPLE/PRELOAD Example Instructions

B3 B2 B1 B0 Instruction Register Selected

0 0 0 0 EXTEST Boundary-Scan Register

0 0 0 1 SAMPLE/PRELOAD Boundary-Scan Register

0 0 1 0 IDCODE ID Register

0 1 0 0 HIGHZ Bypass

0 1 0 1 CLAMP Bypass

0 1 1 0 ENABLE_ONCE OnCE Register

0 1 1 1 DEBUG_REQUEST OnCE Register

1 1 1 1 BYPASS Bypass
26 DSP56300 JTAG Examples

SAMPLE/PRELOAD Example
dc $04 ; go to Shift DR - lsb of data outD12
dc $04 ; go to Shift DR D11
dc $04 ; go to Shift DR D10
dc $04 ; go to Shift DR D9
dc $04 ; go to Shift DR D8
dc $04 ; go to Shift DR D7
dc $04 ; go to Shift DR D6
dc $84 ; go to Shift DR - msb of data outD5

dc $04 ; go to Shift DR - lsb of data outD4
dc $04 ; go to Shift DR D3
dc $04 ; go to Shift DR ctrl D11:D0
dc $04 ; go to Shift DR D2
dc $04 ; go to Shift DR D1
dc $04 ; go to Shift DR D0
dc $04 ; go to Shift DR A17
dc $04 ; go to Shift DR - msb of data outA16
dc $04 ; go to Shift DR - lsb of data outA15
dc $04 ; go to Shift DR ctrl A17:A9
dc $04 ; go to Shift DR A14
dc $04 ; go to Shift DR A13
dc $04 ; go to Shift DR A12
dc $04 ; go to Shift DR A11
dc $04 ; go to Shift DR A10
dc $04 ; go to Shift DR - msb of data outA9
dc $04 ; go to Shift DR - lsb of data outA8
dc $04 ; go to Shift DR A7
dc $04 ; go to Shift DR A6
dc $04 ; go to Shift DR ctrl A8:A0
dc $04 ; go to Shift DR A5
dc $04 ; go to Shift DR A4
dc $14 ; go to Shift DR A3
dc $94 ; go to Shift DR - msb of data outA2

dc $14 ; go to Shift DR - lsb of data outA1
dc $14 ; go to Shift DR A0
dc $04 ; go to Shift DR BG~
dc $04 ; go to Shift DR AA0
dc $14 ; go to Shift DR AA1
dc $04 ; go to Shift DR RD~
dc $04 ; go to Shift DR WR~
dc $04 ; go to Shift DR - msb of data outctrl AA0
dc $04 ; go to Shift DR - lsb of data outctrl AA1
dc $04 ; go to Shift DR ctrl BB~
dc $04 ; go to Shift DR BB~
dc $04 ; go to Shift DR BR~
dc $04 ; go to Shift DR TA~
dc $04 ; go to Shift DR BCLK~
dc $04 ; go to Shift DR BCLK
dc $04 ; go to Shift DR - msb of data outCLKOUT
dc $04 ; go to Shift DR - lsb of data outctrl RD~/WR~/BCLK~/BCLK
dc $04 ; go to Shift DR ctrl CAS~
dc $04 ; go to Shift DR ctrl AA2
dc $04 ; go to Shift DR ctrl AA3
dc $04 ; go to Shift DR EXTAL
dc $14 ; go to Shift DR CAS~
dc $14 ; go to Shift DR AA2
dc $04 ; go to Shift DR - msb of data outAA3

dc $04 ; go to Shift DR - lsb of data outRESET~
dc $04 ; go to Shift DR ctrl HAD0
dc $04 ; go to Shift DR HAD0
dc $84 ; go to Shift DR ctrl HAD1
DSP56300 JTAG Examples 27

SAMPLE/PRELOAD Example
dc $04 ; go to Shift DR HAD1
dc $04 ; go to Shift DR ctrl HAD2
dc $04 ; go to Shift DR HAD2
dc $04 ; go to Shift DR - msb of data outctrl HAD3
dc $04 ; go to Shift DR - lsb of data outHAD3
dc $04 ; go to Shift DR ctrl HAD4
dc $04 ; go to Shift DR HAD4
dc $04 ; go to Shift DR ctrl HAD5
dc $04 ; go to Shift DR HAD5
dc $04 ; go to Shift DR ctrl HAD6
dc $04 ; go to Shift DR HAD6
dc $04 ; go to Shift DR - msb of data outctrl HAD7
dc $04 ; go to Shift DR - lsb of data outHAD7
dc $04 ; go to Shift DR ctrl HAS
dc $04 ; go to Shift DR HAS
dc $04 ; go to Shift DR ctrl HA8
dc $04 ; go to Shift DR HA8
dc $04 ; go to Shift DR ctrl HA9
dc $04 ; go to Shift DR HA9
dc $04 ; go to Shift DR - msb of data outctrl HCS

dc $04 ; go to Shift DR - lsb of data outHCS
dc $04 ; go to Shift DR ctrl TIO0
dc $04 ; go to Shift DR TIO0
dc $84 ; go to Shift DR ctrl TIO1
dc $04 ; go to Shift DR TIO1
dc $04 ; go to Shift DR ctrl TIO2
dc $04 ; go to Shift DR TIO2
dc $04 ; go to Shift DR - msb of data outctrl HREQ
dc $04 ; go to Shift DR - lsb of data outHREQ
dc $04 ; go to Shift DR ctrl HACK
dc $04 ; go to Shift DR HACK
dc $04 ; go to Shift DR ctrl HRW
dc $04 ; go to Shift DR HRW
dc $04 ; go to Shift DR ctrl HDS
dc $04 ; go to Shift DR HDS
dc $04 ; go to Shift DR - msb of data outctrl SCK0
dc $04 ; go to Shift DR - lsb of data outSCK0
dc $04 ; go to Shift DR ctrl SCK1
dc $04 ; go to Shift DR SCK1
dc $04 ; go to Shift DR ctrl SCLK
dc $04 ; go to Shift DR SCLK
dc $04 ; go to Shift DR ctrl TXD
dc $04 ; go to Shift DR TXD
dc $04 ; go to Shift DR - msb of data outctrl RXD

dc $04 ; go to Shift DR - lsb of data outRXD
dc $04 ; go to Shift DR ctrl SC00
dc $04 ; go to Shift DR SC00
dc $84 ; go to Shift DR ctrl SC10
dc $04 ; go to Shift DR SC10
dc $04 ; go to Shift DR ctrl STD0
dc $04 ; go to Shift DR STD0
dc $04 ; go to Shift DR - msb of data outctrl SRD0
dc $04 ; go to Shift DR - lsb of data outSRD0
dc $04 ; go to Shift DR PINIT
dc $04 ; go to Shift DR ctrl DE~
dc $04 ; go to Shift DR DE~
dc $04 ; go to Shift DR ctrl SC01
dc $04 ; go to Shift DR SC01
dc $04 ; go to Shift DR ctrl SC02
dc $04 ; go to Shift DR - msb of data outSC02
dc $04 ; go to Shift DR - lsb of data outctrl STD1
28 DSP56300 JTAG Examples

CLAMP Example
dc $04 ; go to Shift DR STD1
dc $04 ; go to Shift DR ctrl SRD1
dc $04 ; go to Shift DR SRD1
dc $04 ; go to Shift DR ctrl SC11
dc $04 ; go to Shift DR SC11
dc $04 ; go to Shift DR ctrl SC12
dc $a4 ; go to Exit DR - msb of data outSC12
dc $30 ; go to Update DR
dc $10 ; go to Run-Test-Idle
dc $00 ; EXIT

org p:$100
START

...
jsr JTAG_RTI
jsr JTAG_SAMPLE
debug

JTAG_SAMPLE:
 move #JTAG_SAMPLE_SEQ,r0

jsr JTAG_EXECUTE
rts

3.7 CLAMP Example
The CLAMP example shows how the CLAMP instruction is executed. After the SAMPLE/PRELOAD
instruction is executed as in Section 3.6, the Select-IR scan path is selected to shift in the CLAMP
instruction by sending 0101 on TDI. Since the boundary scan register has been preloaded with a 144-bit
data, the signals AA1, AA2, CAS, and A[3–0] are set to logic 1 and the signals A[17–4] are set to logic 0
after the CLAMP instruction is executed. Since the CLAMP instruction selects the Bypass Register to be
connected between TDI and TDO, data shifted out on TDO is the same as the data shifted in on TDI when
the Shift-DR state is entered. Table 12 describes the instructions used in Example 15.

Table 12. CLAMP Example Instructions

B3 B2 B1 B0 Instruction Register Selected

0 0 0 0 EXTEST Boundary-Scan Register

0 0 0 1 SAMPLE/PRELOAD Boundary-Scan Register

0 0 1 0 IDCODE ID Register

0 1 0 0 HIGHZ Bypass

0 1 0 1 CLAMP Bypass

0 1 1 0 ENABLE_ONCE OnCE Register

0 1 1 1 DEBUG_REQUEST OnCE Register

1 1 1 1 BYPASS Bypass
DSP56300 JTAG Examples 29

EXTEST Example
Example 15. CLAMP Example

org x:
JTAG_CLAMP_SEQ:

dc $30 ; go to Select DR
dc $30 ; go to Select IR
dc $10 ; go to Capture IR
dc $10 ; go to Shift IR
dc $14 ; go to Shift IR - 1
dc $04 ; go to Shift IR - 0
dc $14 ; go to Shift IR - 1
dc $24 ; go to Exit IR - 0
dc $30 ; go to Update IR
dc $10 ; go to Run-Test-Idle
dc $00 ; EXIT

org p:$100
START

...
jsr JTAG_RTI
jsr JTAG_SAMPLE
jsr JTAG_CLAMP
debug

JTAG_CLAMP:
 move #JTAG_CLAMP_SEQ,r0

jsr JTAG_EXECUTE
rts

3.8 EXTEST Example
The EXTEST example shows how the EXTEST instruction is executed. After the SAMPLE/PRELOAD
instruction executes as discussed in Section 3.6, SAMPLE/PRELOAD Example, on page 25, the Select-IR
scan path is selected to shift in the EXTEST instruction by sending 0000 on TDI. Since the boundary scan
register has been preloaded with a 144-bit data, the signals AA1, AA2, CAS, A[3–0] are set to logic 1 and
the signals A[17–4] are set to logic 0 after the EXTEST instruction is executed. Unlike the CLAMP
instruction which selects the Bypass Register to be connected between TDI and TDO, the EXTEST
instruction selects the boundary scan register to be connected between TDI and TDO to drive test data
off-chip via the boundary outputs and to receive test data off-chip via the boundary inputs.Table 13
describes the instructions used in Example 16.

Table 13. EXTEST Example Instructions

B3 B2 B1 B0 Instruction Register Selected

0 0 0 0 EXTEST Boundary-Scan Register

0 0 0 1 SAMPLE/PRELOAD Boundary-Scan Register

0 0 1 0 IDCODE ID Register

0 1 0 0 HIGHZ Bypass

0 1 0 1 CLAMP Bypass

0 1 1 0 ENABLE_ONCE OnCE Register

0 1 1 1 DEBUG_REQUEST OnCE Register

1 1 1 1 BYPASS Bypass
30 DSP56300 JTAG Examples

Daisy Chain Example

f the
Example 16. EXTEST Example

org x:
JTAG_EXTEST_SEQ:

dc $30 ; go to Select DR
dc $30 ; go to Select IR
dc $10 ; go to Capture IR
dc $10 ; go to Shift IR
dc $04 ; go to Shift IR - 0
dc $04 ; go to Shift IR - 0
dc $04 ; go to Shift IR - 0
dc $24 ; go to Exit IR - 0
dc $30 ; go to Update IR
dc $10 ; go to Run-Test-Idle
dc $00 ; EXIT

org p:$100
START

...
jsr JTAG_RTI
jsr JTAG_SAMPLE
jsr JTAG_EXTEST
debug

JTAG_EXTEST:
 move #JTAG_EXTEST_SEQ,r0

jsr JTAG_EXECUTE
rts

3.9 Daisy Chain Example
The daisy chain example shows how to use the IDCODE instruction in a daisy chain configuration. Two
DSPs are daisy chained as shown in Figure 6. To read the IDCODE of the second DSP, the first DSP in the
chain must be placed in the BYPASS mode. The Select-IR scan path is selected to shift in the BYPASS
and IDCODE instructions by sending 1111 0010 on TDI least significant bit first. The BYPASS
instruction is concatenated with the IDCODE instruction. Next, the Select-DR scan path is selected to shift
out the 32-bit contents of the second DSP’s ID Register in addition to the first DSP’s 1-bit content o
Bypass Register on TDO. The ID Register content is stored in x:JTAG_OUT and x:JTAG_OUT+1. The
most significant byte is stored in the low byte of x:JTAG_OUT and the lower 24 bits are stored in
x:JTAG_OUT+1 as shown in Table 15. Table 14 lists the instructions used in Example 17.

Table 14. Daisy Chain Example Instructions

B3 B2 B1 B0 Instruction Register Selected

0 0 0 0 EXTEST Boundary-Scan Register

0 0 0 1 SAMPLE/PRELOAD Boundary-Scan Register

0 0 1 0 IDCODE ID Register

0 1 0 0 HIGHZ Bypass

0 1 0 1 CLAMP Bypass

0 1 1 0 ENABLE_ONCE OnCE Register

0 1 1 1 DEBUG_REQUEST OnCE Register

1 1 1 1 BYPASS Bypass
DSP56300 JTAG Examples 31

Daisy Chain Example
Figure 6. Daisy Chain Example

The DSP56303 ID Register contains $1180301D.

Example 17. Daisy Chain Example

org x:
JTAG_ID_SEQ:
 dc $04 ; go to Shift DR
 dc $04 ; go to Shift DR - msb of data out
 dc $04 ; go to Shift DR - lsb of data out
 dc $04 ; go to Shift DR
 dc $04 ; go to Shift DR
 dc $04 ; go to Shift DR
 dc $04 ; go to Shift DR
 dc $04 ; go to Shift DR
 dc $04 ; go to Shift DR
 dc $04 ; go to Shift DR - msb of data out
 dc $04 ; go to Shift DR - lsb of data out
 dc $04 ; go to Shift DR

Table 15. DSP56303 IDCODE Output

x:JTAG_OUT x:JTAG_OUT+1

ID Register
Bits 31–24

$11

ID Register
Bits 23–0
$80301D

Table 16. DSP56307 IDCODE Output Description

Bit Description Value

31–28 Version Information 0001 Version 1

27–22 Design Center Number 000110 Motorola Semiconductor Israel

21–17 Core Number 00000 DSP56300

16–12 Chip Derivative Number 00011 DSP56303

11–1 Manufacturer Identity 00000001110 Motorola

0 IEEE 1149.1 Requirement 1 Fixed logic 1

TDI TDO

TMS

TCK

TDI TDO

TMS

TCK

DSP 1 DSP 2

Host
32 DSP56300 JTAG Examples

Daisy Chain Example
 dc $04 ; go to Shift DR
 dc $04 ; go to Shift DR
 dc $04 ; go to Shift DR
 dc $04 ; go to Shift DR
 dc $04 ; go to Shift DR
 dc $84 ; go to Shift DR - msb of data out
 dc $04 ; go to Shift DR - lsb of data out
 dc $04 ; go to Shift DR
 dc $04 ; go to Shift DR
 dc $04 ; go to Shift DR
 dc $04 ; go to Shift DR
 dc $04 ; go to Shift DR
 dc $04 ; go to Shift DR
 dc $04 ; go to Shift DR - msb of data out
 dc $20 ; go to Exit DR - bypass data
 dc $30 ; go to Update DR
 dc $10 ; go to Run-Test-Idle
 dc $00 ; EXIT

org p:$100
START

jsr JTAG_RTI
jsr JTAG_IDCODE
debug

JTAG_IDCODE:
 move #JTAG_ID_SEQ,r0

jsr JTAG_EXECUTE
rts
DSP56300 JTAG Examples 33

Daisy Chain Example
NOTES:
34 DSP56300 JTAG Examples

Daisy Chain Example
NOTES:
DSP56300 JTAG Examples 35

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body, or other applications intended to support life, or for
any other application in which the failure of the Motorola product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or
death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

OnCE, DigitalDNA, and the DigitalDNA logo are trademarks of Motorola, Inc.

AN2074/D

How to reach us:

USA/EUROPE
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1-303-675-2140
1-800-441-2447

Technical InformationCenter
1-800-521-6274

JAPAN
Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC
Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334

Home Page
http://www.mot.com/SPS/DSP

DSP Helpline
http://www.motorola-dsp.com/contact
email: dsphelp@dsp.sps.mot.com

	DSP56300 JTAG Examples
	1 Test Access Port
	1.1 JTAG Pins
	1.2 TAP Controller
	1.3 Instruction Register
	1.4 Bypass Register
	1.5 ID Register
	1.6 Boundary-Scan Register
	1.7 TAP Signals Example

	2 Boundary-Scan Description Language
	2.1 Entity Description
	2.2 Generic Parameter
	2.3 Logical Port
	2.4 Pin Mapping
	2.5 Scan Port Identification
	2.6 Instruction Register
	2.7 ID Code Register
	2.8 Boundary Register

	3 Programming Examples
	3.1 Test Setup
	3.2 Entering the Run-Test/Idle State
	3.2.1 JTAG_RTI Subroutine
	3.2.2 JTAG_EXECUTE Subroutine

	3.3 BYPASS Example
	3.4 IDCODE Example
	3.5 HIGHZ Example
	3.6 SAMPLE/PRELOAD Example
	3.7 CLAMP Example
	3.8 EXTEST Example
	3.9 Daisy Chain Example

