
M o t o r o l a ’ s H i g h - P e r f o r m a n c e D S P T e c h n o l o g y

APR23/D

Direct Memory Access
Controller

Using the
DSP56300

Using the DSP56300 Direct Memory
Access Controller

by
Eliezer Sand

Motorola Semiconductor Israel Ltd.

Motorola, Incorporated
Semiconductor Products Sector
6501 William Cannon Drive West
Austin, TX 78735-8598

OnCE and Mfax are trademarks of Motorola, Inc.

© MOTOROLA INC., 1997

Order this document by APR23/D.
Motorola reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design. Motorola does not assume any liability arising out of the application or use of
any product or circuit described herein; neither does it convey any license under its patent rights nor the
rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim
of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

TABLE OF CONTENTS

SECTION 1 INTRODUCTION . 1-1
1.1 OVERVIEW . 1-3
1.2 DMA REGISTERS . 1-3

SECTION 2 DMA USAGE BASIC EXAMPLES. 2-1
2.1 TRANSFERRING FROM X MEMORY TO Y MEMORY 2-3
2.2 DOWNLOADING FROM EXTERNAL MEMORY 2-4
2.3 GETTING DATA FROM THE ESSI RECEIVER 2-5

SECTION 3 MULTI-DIMENSIONAL DMA TRANSFERS 3-1
3.1 TWO-DIMENSIONAL (2D) TRANSFER. 3-3
3.2 THREE-DIMENSIONAL (3D) TRANSFER. 3-4
3.3 EXAMPLES FOR OTHER ADDRESS TYPES. 3-5
3.3.1 Circular Buffer Using 2D Addressing 3-5
3.3.2 Transfers with Equidistant Offset. 3-5
3.3.3 Transferring Data for 3D ESSI Transmitters 3-6

SECTION 4 OPERATION OF MULTIPLE DMA CHANNELS 4-1
4.1 INTRODUCTION . 4-3
4.2 COLOR COMPRESSION EXAMPLE 1 4-3
4.3 PRIORITIES BETWEEN CHANNELS . 4-5
4.4 COLOR COMPRESSION EXAMPLE 2 4-6
4.5 CONTINUOUS MODE . 4-8

SECTION 5 DMA AND CORE CONTENTION 5-1
5.1 CONTENTION FOR INTERNAL MEMORY 5-3
5.2 CONTENTION FOR PERIPHERAL REGISTERS 5-3
5.3 PRIORITIES ON EXTERNAL ACCESS. 5-3
5.4 PACKING/UNPACKING MODE . 5-5
5.5 CORE ACCESSES THE DMA IN MID-OPERATION. 5-6
5.6 DMA INITIALIZATION AFTER RESET 5-7
5.7 WAIT INSTRUCTION. 5-7

MOTOROLA Using the DSP56300 DMA Controller iii

5.8 STOP INSTRUCTION .5-8
5.9 DEBUG MODE .5-8

SECTION 6 HI32 DMA OPERATION .6-1
6.1 INTRODUCTION .6-3
6.2 HI32 IN UNIVERSAL BUS MODE. .6-3
6.2.1 HI32 DSP Side Registers in Universal Bus Mode.6-3
6.2.2 HI32 DMA Operation in Universal Bus Mode6-4
6.2.3 DMA Code Example—HI32 in UB Mode.6-5
6.3 HI32 IN PCI BUS MODE .6-9
6.3.1 HI32 DSP Side Registers in PCI Bus Mode6-9
6.3.2 HI32 DMA Operation in PCI Mode .6-10
6.3.3 DMA Code Example—HI32 in PCI Bus Mode 6-11

 iv Using the DSP56300 DMA Controller MOTOROLA

MOTOROLA Using the DSP56300 DMA Controller v

LIST OF FIGURES

Figure 3-1 Linear to 2D Transfer. 3-3

Figure 3-2 3D to 2D Transfer . 3-4

Figure 4-1 Screen Memory Representation . 4-4

Figure 4-2 Transfer from System Memory to Screen Memory 4-4

Figure 4-3 Example of Multi-channel Operation . 4-6

Figure 4-4 QCIF Block Transfer Example. 4-7

Figure 4-5 Example of Multi-channel Operation with Continuous Mode. 4-8

Figure 6-1 Synchronous Connection of DSP56301 Port A to DSP56301 HI32 . 6-7

Figure 6-2 Connection of DSP56301 to PCI Bus . 6-12

 vi Using the DSP56300 DMA Controller MOTOROLA

LIST OF TABLES

Table 1-1 DMA Controller Data Transfers .1-3

Table 1-2 DMA Control Register Structure. .1-4

Table 1-3 DMA Counter Structure .1-8

Table 1-4 DMA Status Register Structure .1-9

SECTION 1

INTRODUCTION

The Direct Memory Access (DMA) controller is
the part of the DSP56300 core that permits
data transfers between internal or external
memory and/or internal or external I/O in any
combination, without intervention of the core.
Due to dedicated DMA address and data buses,
as well as internal memory partitioning, a high
level of isolation is achieved so that the DMA
operation does not interfere with or slow down
the core operation.

MOTOROLA Using the DSP56300 DMA Controller 1-1

Introduction

1.1 OVERVIEW .1-3
1.2 DMA REGISTERS. .1-3

1-2 Using the DSP56300 DMA Controller MOTOROLA

Introduction

Overview

1.1 OVERVIEW

Because the DMA controller is part of the DSP56300 core, the Bus Interface Unit (BIU)
receives all the needed controls from the DMA controller and can manage external
activity with maximum flexibility and performance, depending on the profile of the
tasks to be handled. The DMA controller has six channels, each with its own register set.
All the registers are memory-mapped in the internal I/O memory space. Table 1-1
shows the various types of data transfers the DMA controller can perform.

Data transfer for one channel takes a minimum of 2 clock cycles per single word. The
number of clocks per transfer can be larger if there is a contention between the core and
the DMA activity (i.e., if they both access the same 1/4 K of internal RAM in the same
cycle (or three cycles in Packing mode—see Section 5.4 on page 5-5), or, if they both
want to access external memory).

1.2 DMA REGISTERS

The DMA has six identical channels. Each channel has four dedicated registers:

• DSRi —DMA Source Register for channel i which holds the source base address
for the next DMA transfer

• DDRi —DMA Destination Register for channel i which holds the destination base
address for the next DMA transfer

• DCOi —DMA Counter for channel i which contains the number of DMA
transfers left to perform

• DCRi —DMA Control Register for channel i which contains all the bits needed to
control the operation of the channel

Table 1-1 DMA Controller Data Transfers

Location to/from Location
Minimum Clock
Cycles per Single

Word Transfer

Internal Memory → Internal Memory 2

External Memory ↔ Internal Memory 2 + wait states

External Memory → External Memory 2 + wait states

Internal Memory ↔ Internal I/O 2

External Memory ↔ Internal I/O 2 + wait states

Internal I/O → Internal I/O 2

MOTOROLA Using the DSP56300 DMA Controller 1-3

Introduction

DMA Registers

In addition to these channel-dedicated registers, there are also five common registers.
The common registers include four DMA Offset Registers (DOR0, DOR1, DOR2, and
DOR3) and one read-only DMA Status Register (DSTR). The DORs hold offset addresses
to be used by any of the channels, as required, in specific addressing modes.

• Table 1-2 describes the function of DMA Control Register (DCR) bits.

• Table 1-3 on page 1-8 describes the different modes of the DMA Counter (DCO)
which are selected by the addressing mode defined in the DCR.

• Table 1-4 on page 1-9 describes the structure of the read only DSTR.

Table 1-2 DMA Control Register Structure

Bit
No.

Bit
Names Value Function

23 DE
0 Clearing the bit disables DMA transfers on this channel.

1 Setting the bit initiates a transfer, or enables the initiation of a transfer
by another source (e.g., by external interrupt).

22 DIE
0 Clearing this bit disables the interrupt-at-end-of-transfer function for

this channel.

1 Setting the bit enables the interrupt-at-end-of-transfer function for this
channel.

21–19 DTM[2:0]

—

These bits define:
• Transfer mode: Block, line or word per request
• Trigger source: DMA request or DE with/without DE auto

clear at end-of-transfer

000 This value selects a block transfer by request with DE auto clear.

001 This value selects a word transfer by request with DE auto clear.

010 This value selects a line transfer by request with DE auto clear.

011 This value selects a block transfer by DE with DE auto clear.

100 This value selects a block transfer by request without DE auto clear.

101 This value selects a word transfer by request without DE auto clear.

110 This value is not defined and is reserved.

111 This value is not defined and is reserved.

18–17 DPR[1:0]

— These bits select the channel priority.

00 This value selects Priority Level 0 (lowest).

01 This value selects Priority Level 1.

10 This value selects Priority Level 2.

11 This value selects Priority Level 3 (highest).

1-4 Using the DSP56300 DMA Controller MOTOROLA

Introduction

DMA Registers

16 DCON
0 Clearing this bit disables Continuous mode.

1 Setting this bit enables Continuous mode for this channel.

15–11 DRS[4:0]

— These bits identify the DMA request source.

00000 External (IRQA pin)

00001 External (IRQB pin)

00010 External (IRQC pin)

00011 External (IRQD pin)

00100 Transfer Done from channel 0

00101 Transfer Done from channel 1

00110 Transfer Done from channel 2

00111 Transfer Done from channel 3

01000 Transfer Done from channel 4

01001 Transfer Done from channel 5

01010–
11111

Peripheral Request MDRQ0–Peripheral Request MDRQ21

10 D3D
0 Clearing this bit disables 3D mode.

1 Setting this bit enables 3D mode.

Table 1-2 DMA Control Register Structure (Continued)

Bit
No.

Bit
Names Value Function

MOTOROLA Using the DSP56300 DMA Controller 1-5

Introduction

DMA Registers

9–7 DAM[5:3]

If D3D = 0

— Destination
Addressing Mode Counter Mode Offset Select

000 Two-dimensional B DOR0

001 Two-dimensional B DOR1

010 Two-dimensional B DOR2

011 Two-dimensional B DOR3

100 No Update A None

101 Postincrement-by-1 A None

110 Reserved

111 Reserved

Note: If the destination address generation mode specifies a different counter mode
than the source address generation mode, then the counter mode is B.

If D3D = 1

— Destination
Addressing Mode Offset Select

000 Two-dimensional DOR0

001 Two-dimensional DOR1

010 Two-dimensional DOR2

011 Two-dimensional DOR3

100 No Update None

101 Postincrement-by-1 None

110 Three-dimensional DOR0: DOR1

111 Three-dimensional DOR2: DOR3

Table 1-2 DMA Control Register Structure (Continued)

Bit
No.

Bit
Names Value Function

1-6 Using the DSP56300 DMA Controller MOTOROLA

Introduction

DMA Registers

6–4 DAM[2:0]

If D3D = 0

— Source Addressing
Mode Counter Mode Offset Select

000 Two-dimensional B DOR0

001 Two-dimensional B DOR1

010 Two-dimensional B DOR2

011 Two-dimensional B DOR3

100 No Update A None

101 Postincrement-by-1 A None

110 Reserved

111 Reserved

Note: If the source address generation mode specifies a different counter mode than
the destination address generation mode, then the counter mode is B.

If D3D = 1

— Addressing Mode Counter Mode Offset Select

000
Source: 3D

C
Source: DOR0:DOR1

Dest: See DAM[5:3] Dest: See DAM[5:3]

001
Source: 3D

D
Source: DOR0:DOR1

Dest: See DAM[5:3] Dest: See DAM[5:3]

010
Source: 3D

E
Source: DOR0:DOR1

Dest: See DAM[5:3] Dest: See DAM[5:3]

011
Source: 3D

Reserved
Source: DOR0:DOR1

Dest: See DAM[5:3] Dest: See DAM[5:3]

100
Source: See DAM[5:3]

C
Source: See DAM[5:3]

Destination: 3D Dest: DOR2:DOR3

101
Source: See DAM[5:3]

D
Source: See DAM[5:3]

Destination: 3D Dest: DOR2:DOR3

110
Source: See DAM[5:3]

E
Source: See DAM[5:3]

Destination: 3D Dest: DOR2:DOR3

111
Source: See DAM[5:3]

Reserved
Source: See DAM[5:3]

Destination: 3D Dest: DOR2:DOR3

Table 1-2 DMA Control Register Structure (Continued)

Bit
No.

Bit
Names Value Function

MOTOROLA Using the DSP56300 DMA Controller 1-7

Introduction

DMA Registers

3–2 DDS[1:0]

— These bits select the destination memory (X data, Y data, or program).

00 X Memory Space

01 Y Memory Space

10 P Memory Space

11 Reserved

Note: In Cache mode, a DMA-to-program memory space has some limitations (as
described in the DSP56300 Family Manual).

1–0 DSS{1:0]

— These bits select the source memory (X data, Y data, or program).

00 X Memory Space

01 Y Memory Space

10 P Memory Space

11 Reserved

Note: In Cache mode, a DMA-from-program memory space has some limitations (as
described in the DSP56300 Family Manual).

Table 1-3 DMA Counter Structure

Addressing
Mode

Bit Structure Description

23 18 17 12 11 6 5 0

No update Not used

Linear DCO

2D DCOH DCOL

3D mode C DCOH DCOM DCOL

3D mode D DCOH DCOM DCOL

3D mode E DCOH DCOM DCOL

Note: In No Update mode, the counter is not used. In Linear mode, the counter is used as a single
register. In 2D mode, the counter is used as two registers DCOH and DCOL. In 3D mode,
the counter is used as three registers DCOH, DCOM, and DCOL which can be different
lengths, depending on the selected mode (i.e., C, D, or E).

Table 1-2 DMA Control Register Structure (Continued)

Bit
No.

Bit
Names Value Function

1-8 Using the DSP56300 DMA Controller MOTOROLA

Introduction

DMA Registers

Table 1-4 DMA Status Register Structure

 Bit No. Bit
Names Value Function

23–12 These bits are reserved.

11–9 DCH[2:0]

— These bits identify the active channel number

000 DMA Channel 0

001 DMA Channel 1

010 DMA Channel 2

011 DMA Channel 3

100 DMA Channel 4

101 DMA Channel 5

110 reserved

111 reserved

8 DACT
0 The active DMA channel is disabled or awaiting DMA

requests.

1 The active DMA channel is performing a transfer.

7–6 These bits are reserved.

5 DTD5
0 DMA channel 5 has not completed a transfer.

1 DMA channel 5 has completed all requested transfers.

4 DTD4
0 DMA channel 4 has not completed a transfer.

1 DMA channel 4 has completed all requested transfers.

3 DTD3
0 DMA channel 3 has not completed a transfer.

1 DMA channel 3 has completed all requested transfers.

2 DTD2
0 DMA channel 2 has not completed a transfer.

1 DMA channel 2 has completed all requested transfers.

1 DTD1
0 DMA channel 1 has not completed a transfer.

1 DMA channel 1 has completed all requested transfers.

0 DTD0
0 DMA channel 0 has not completed a transfer.

1 DMA channel 0 has completed all requested transfers.

MOTOROLA Using the DSP56300 DMA Controller 1-9

Introduction

DMA Registers

1-10 Using the DSP56300 DMA Controller MOTOROLA

SECTION 2

DMA USAGE BASIC EXAMPLES

These examples show the simplest use of one
DMA channel. They assume no interference
from other sources, such as other DMA
channels, contentions with the core, etc.

MOTOROLA Using the DSP56300 DMA Controller 2-1

DMA Usage Basic Examples

2.1 TRANSFERRING FROM X MEMORY TO Y MEMORY2-3
2.2 DOWNLOADING FROM EXTERNAL MEMORY 2-4
2.3 GETTING DATA FROM THE ESSI RECEIVER2-5

2-2 Using the DSP56300 DMA Controller MOTOROLA

DMA Usage Basic Examples

Transferring from X Memory to Y Memory

2.1 TRANSFERRING FROM X MEMORY TO Y MEMORY

The following code causes DMA channel 0 to transfer a block of N words linearly from X
internal memory to Y internal memory.

movep #$source_addr,x:M_DSR0
movep #$dest_addr,x:M_DDR0
movep #$(N-1),x:M_DCO0 ; # of words to be transferred
movep #$9802d4,x:M_DCR0 ; software-triggered,

; x linear -> y linear
nop ; due to core pipeline
nop
jclr #0,x:M_DSTR,* ; polling of DTD0

In this code, the value written to DSR0 is the address of the first data item to be
transferred. The value written to DDR0 is the target address of the first data item to be
transferred.

Note: It is not necessary to specify that the address is internal.

The DMA hardware evaluates this information automatically according to the specific
DSP56300 family member memory map. The number of transfers to perform (N) is
(DCO + 1); therefore, the value written to DCO0 is (N – 1).

The content of DCR0 is as follows:

1. DE = 1 (i.e., start a transfer)

2. DIE = 0 (i.e., disable an interrupt to the core at end of block)

3. DTM = 011 (i.e., block transfer triggered by DE—Software-triggered mode)

4. DPR = 00 (i.e., the priority level is zero—the lowest one)

5. DCON = 0 (i.e., the continuous mode is not activated)

6. DRS = 00000 (In Software-triggered mode, this field is ignored.)

7. D3D = 0 (i.e., non-three-dimensional mode)

8. DAM = 101101 (i.e., source address is post-incremented by 1—Linear mode—and
destination address is also Linear mode)

9. DDS = 01 (i.e., the destination space is Y memory)

10. DSS = 00 (i.e., the source space is X memory)

In this example, the core does not do anything while the DMA is transferring the block
of data. The core polls the DTD bit of this channel and continues to execute the program
after the DMA finishes transferring the data. Due to the chip pipeline, because the core

MOTOROLA Using the DSP56300 DMA Controller 2-3

DMA Usage Basic Examples

Downloading from External Memory
polls this bit until it equals 0, the chip must wait 2 clock cycles from the cycle in which
DE is written until DTD is reset at the start of block transfer to indicate that the channel
is busy. Another option is to poll the DACT bit (Bit 8) in the same DSTR until it is set.
This bit indicates whether any DMA channel is actually transferring a data item. Because
of the core and DMA pipelines, the core must wait 3 clock cycles (3 NOP instructions)
until this bit is set and can be polled.

2.2 DOWNLOADING FROM EXTERNAL MEMORY

The example code presented in this section causes DMA channel 2 to transfer a block of
N words linearly from external P memory to internal P memory. In this example, the
trigger of the transfer is a request from Timer 0. This is an example of a program overlay
in which the core works on a part of the program, while, in parallel, a DMA channel
downloads another part of the program. It is common for an operating system to use a
timer for scheduling such a DMA activity. In this example, the timer is programmed to
use its most basic mode, and the DMA controller is programmed to generate a core
interrupt at the end of transfer without clearing the DE bit. When the interrupt occurs,
this code loads new parameters to the address registers to prepare them for the next
download task that occurs when the next timer interrupt request occurs
(i.e., 2 × (num_comp) from the previous trigger). It doesn’t matter whether the timer or
the DMA is programmed first.

Note: The user must make sure that the program size N is smaller than the number
of the timer cycles programmed in TCPR0. Otherwise, the DMA gets a new
trigger before it finishes the previous task and ignores the new trigger.

M_TCSR0 EQU $ffff8f ;DSP56301 Timer0 control/status reg.
M_TLR0 EQU $ffff8e ;DSP56301 Timer0 load register
M_TCPR0 EQU $ffff8d ;DSP56301 Timer0 compare register

;
bclr #9,SR ;enable interrupt priority levels 3,2,1
bset #17,x:M_IPRC ;enable DMA2 interrupt at priority

;level 1
movep #$9,x:M_AAR0 ;AAR0 indicates to all external P space

;as static RAM
movep #$1fffe2,x:M_BCR ;2 wait states in area 0 access
movep #$0,x:M_TLR0 ;initial value of the timer counter
movep #$num_comp,x:M_TCPR0 ;number of CLK/2 cycles until a trigger

;is generated
movep #$201,x:M_TCSR0 ;Timer0 enable at mode 0 + reload
movep #$ext_addr,x:M_DSR2 ;external address
movep #$int_addr,x:M_DDR2 ;internal address
movep #$(N-1),x:M_DCO2 ;N is number of words to ne downloaded
movep #$e082da,x:M_DCR2 ;block transfer triggered by timer0
... ;p linear -> p linear

2-4 Using the DSP56300 DMA Controller MOTOROLA

DMA Usage Basic Examples

Getting Data from the ESSI Receiver
... ;DE is not cleared at end of block

... ;interrupt is generated at the
;end of block
;channel priority 0 (doesn’t matter in
;the example)

org p:I_DMA2
I_DMA2 movep (pointer1),x:M_DSR2 ;interrupt routine: prepare parameters

movep (pointer2),x:M_DDR2 ;for next download

Note: Basically, the core can transfer a block of data from one memory space to
another one. If the transfer is in data memory, then the DMA transfer saves
core MIPS, but uses the same time (for transfer to/from peripheral the core
does the transfer even faster using one cycle instead of two). For transfers
to/from program space, however, the advantage of using the DMA is
doubled, not only because it frees the core for other tasks, but also because it
operates much faster. The DMA transfers a data item in 2 cycles, whereas the
core must use a MOVEM instruction that takes 6 cycles.

2.3 GETTING DATA FROM THE ESSI RECEIVER

In the sample code provided in this section, DMA channel 5 is programmed to get data
from the receiver of an ESSI peripheral. In this mode, the source address type must be
No Update mode because the DMA reads the data register of the receiver and its address
is constant. The data is transferred to a circular buffer in the internal X memory. In this
example, the circular buffer is implemented using linear addressing; at the end of the
buffer, an interrupt is issued and the DDR is re-programmed. The example in Section
3.3.1 on page 3-5 shows an alternate way to implement a circular buffer with almost no
intervention from the core.

Note: In this example, the DMA works indefinitely regardless of the content of the
counter DCO5, but the counter is used to generate an interrupt to the core in
order to jump to the top of the buffer after it is filled. The ESSI can be
initialized before or after the programming of the DMA channel.

M_PCRD EQU $ffffaf ;56301 Port D control register
M_RX1 EQU $ffffa8 ;56301 ESSI1 receive data register
M_CRB1 EQU $ffffa6 ;56301 ESSI1 control register B
M_CRA1 EQU $ffffa5 ;56301 ESSI1 control register A

bclr #9,SR ;enable interrupt priority levels 3,2,1
bset #23,x:M_IPRC ;enable DMA5 interrupt at priority

;level 1
movep #$13,x:M_PCRD ;enable ESSI1 SC0, SC1, SRD pins
movep #$180000,x:M_CRA1 ;24 bits per word, maximal frequency
movep #$02010c,x:M_CRB1 ;receiver enable, one bit clock

MOTOROLA Using the DSP56300 DMA Controller 2-5

DMA Usage Basic Examples

Getting Data from the ESSI Receiver
;SC0(RXC) and SC1(FSR) are outputs
movep #M_RX1,x:M_DSR5 ;address of the ESSI1 receive register
movep #$int_addr,x:M_DDR5 ;buffer top address in internal memory
movep #$(N-1),x:M_DCO5 ;N is the size of the circular buffer
movep #$ee62c0,x:M_DCR5 ;word transfer triggered by ESSI1 Rx

;x no update -> x linear
;DE is not cleared at end of block
;interrupt is generated at the
;end of block
;channel priority 3 (doesn’t matter
;in the example)

I_DMA5
movep #$int_addr,x:M_DDR5 ;interrupt routine: point again to the

;circular buffer top address

Note: When the receiver of the ESSI is full, a trigger to the DMA is generated. This
trigger is asserted until the receiver is read (by the DMA or the core). Basically,
the user can program a DMA channel to transfer a block from memory to
memory when a trigger from peripheral is asserted. Although the DMA
operates correctly, there is a problem, because the peripheral does not deassert
the Receiver Full (or Transmitter Empty) condition and can, therefore,
potentially have an undetected overrun or underrun error.

2-6 Using the DSP56300 DMA Controller MOTOROLA

SECTION 3

MULTI-DIMENSIONAL DMA TRANSFERS

The DMA is capable of transferring data in
complex structures. The address mode of the
source or the destination or both can be
Two-Dimensional (2D) or Three-Dimensional
(3D).

MOTOROLA Using the DSP56300 DMA Controller 3-1

Multi-Dimensional DMA Transfers
3.1 TWO-DIMENSIONAL (2D) TRANSFER3-3
3.2 THREE-DIMENSIONAL (3D) TRANSFER 3-4
3.3 EXAMPLES FOR OTHER ADDRESS TYPES3-5

3-2 Using the DSP56300 DMA Controller MOTOROLA

Multi-Dimensional DMA Transfers

Two-Dimensional (2D) Transfer
3.1 TWO-DIMENSIONAL (2D) TRANSFER

For a Two-Dimensional (2D) transfer, the DCO counter is divided into two counters
DCOL and DCOH. An offset register is used to calculate the address jump. The total
number of transfers is (DCOH + 1) × (DCOL + 1). The address for the DMA transfer is
the current content of the address register (DSRi or DDRi). After the transfer is
performed, if DCOL > 0, the address register is incremented by 1 and DCOL is
decremented by 1. If DCOL = 0, the address register is loaded with the sum of its
previous value and the content of the offset register. DCOH is decremented by 1 and
DCOL is reloaded with the initial value that was written by the last core instruction. If
DCOL = DCOH = 0 (i.e., the last transfer of the block), the address register is loaded with
the sum of its previous value and the content of the offset register, and both DCOL and
DCOH are reloaded with the initial values written by the last core instruction. With this
last transfer of the block, the DMA either ceases operation or waits for a new trigger.

Figure 3-1 Linear to 2D Transfer

Jump by Offset

..

..

AA1369

MOTOROLA Using the DSP56300 DMA Controller 3-3

Multi-Dimensional DMA Transfers

Three-Dimensional (3D) Transfer

3.2 THREE-DIMENSIONAL (3D) TRANSFER

For a Three-Dimensional (3D) transfer, the DCO divides into three counters: DCOL,
DCOM and DCOH. This transfer mode uses two offset registers to calculate the address
jump. The total number of transfers is (DCOH + 1) × (DCOM + 1) × (DCOL + 1). The
DMA transfer address is the current content of the address register (DSRi or DDRi).
After performing the transfer, if DCOL > 0, the address register is incremented by 1 and
DCOL is decremented by 1. If DCOL = 0 and DCOM > 0, the address register is loaded
with the sum of its previous value and the content of the first offset register, DCOM is
decremented by 1 and DCOL is reloaded with the initial value written by the last core
instruction. If DCOL = DCOM = 0 and DCOH > 0, the address register is loaded with the
sum of its previous value and the content of the second offset register, DCOH is
decremented by 1, and both DCOL and DCOM are reloaded with the initial values
written to the DCO by the last core instruction. If DCOL = DCOM = DCOH = 0 (i.e., the
last transfer of the block), the address register is loaded with the sum of its previous
value and the content of the second offset register, and DCOL, DCOM and DCOH are
reloaded with the initial values written to the DCO by the last core instruction. After this
last transfer of the block, the DMA either ceases operation or waits for a new trigger.

Figure 3-2 3D to 2D Transfer

..

Jump by Offset 1

Jump by Offset 2

..

Jump by

AA1370

Offset 1

Jump by
Offset 1

Jump by
Offset 1

Jump by
Offset 1

Jump by
Offset 1
3-4 Using the DSP56300 DMA Controller MOTOROLA

Multi-Dimensional DMA Transfers

Examples for Other Address Types
3.3 EXAMPLES FOR OTHER ADDRESS TYPES

The following examples show how to use 2D and 3D Addressing modes to transfer data
between other address types.

3.3.1 Circular Buffer Using 2D Addressing

The example code presented in this section transfers one data word per request until the
end of the circular buffer, and then jumps back by a negative value offset register to the
head of the buffer. Unlike the alternate code presented in Section 2.3 on page 2-5, the
following code does not require the core to handle any interrupts.

M_PCRD EQU $ffffaf ; DSP56301 port D control register
M_RX1 EQU $ffffa8 ; DSP56301 ESSI1 receive data register
M_CRB1 EQU $ffffa6 ; DSP56301 ESSI1 control register B
M_CRA1 EQU $ffffa5 ; DSP56301 ESSI1 control register A
movep #$13,x:M_PCRD ; enable ESSI1 SC0, SC1, SRD pins
movep #$180000,x:M_CRA1 ; 24 bits per word, maximal frequency
movep #$02010c,x:M_CRB1 ; receiver enable, one bit clock
movep #$-(N-1),x:M_DOR0 ; this is the offset to get back
movep #M_RX1,x:M_DSR5 ; address of the ESSI1 receive register
movep #$int_addr,x:M_DDR5 ; buffer top address in internal memory
movep #$(fff000+(N-1)),x:M_DCO5
movep #$ae6040,x:M_DCR5 ; word transfer triggered by ESSI1 Rx

; x no update -> x 2D with DOR0
; DE is not cleared at end of block
; interrupt is not generated at the
; end of block
; channel priority 3 (doesn’t matter
; in the example)

3.3.2 Transfers with Equidistant Offset

The DSP56300 core Address Generation Unit (AGU) has an address mode called
Post-increment By Offset Nn that uses the syntax (Rn) + Nn. This mode can be used, for
example, to perform a decimation of samples stored in a large array. Using the DMA to
perform the same task can free the pointer Rn. If the user programs a DMA channel to be
2D with DCOL = 0, then for every transfer, the address register is updated by offset N
stored in the offset register DORi. Programming the same channel as 3D with DCOH = 0
and DCOL = 0, but with DCOM > 0 and DORi = N (offset) and DORj = –(N × DCOM)
implements a circular buffer that performs an equivalent decimation algorithm (i.e., the
resulting address mode is similar to using the modulo modifier modMn((Rn) + Nn)).

MOTOROLA Using the DSP56300 DMA Controller 3-5

Multi-Dimensional DMA Transfers

Examples for Other Address Types
3.3.3 Transferring Data for 3D ESSI Transmitters

In the example code presented in this section, three ESSI transmitters send data
simultaneously from a DMA channel by using the Line Transfer mode and a 2D
addressing mode to wrap around back to the first transmitter. In this example, the 3D
mode is used to allow the source to generate a circular buffer. The 3D mode is needed
because when DCOL = 0, the destination (ESSI registers) uses an offset and the buffer
must also use an offset. Therefore, this offset is 1. The second offset is used for wrapping
back to top_of_buffer. An interrupt is needed only after the buffer is scanned the number
of times indicated by the contents of DCOH (i.e., DCOH + 1). In this code, the first write
operation to the transmitters is done by the core because after reset, the TDE bit
(Transmitter Data Empty) in the ESSI Status Register (Bit 6 in SSISR) is cleared, and
therefore a DMA request can not be issued for the first word. In order not to change the
code between the first buffer pass and all other passes, the first write is taken by the core
in all passes.

M_PCRC EQU $ffffbf ; DSP56301 port C control register
M_TX00 EQU $ffffbc ; DSP56301 ESSI0 trans.0 data register
M_TX01 EQU $ffffbb ; DSP56301 ESSI0 trans.1 data register
M_TX02 EQU $ffffba ; DSP56301 ESSI0 trans.2 data register
M_CRB0 EQU $ffffb6 ; DSP56301 ESSI0 control register B
M_CRA0 EQU $ffffb5 ; DSP56301 ESSI0 control register A
bclr #8,SR ; enable interrupt priority levels 3,2,1
bset #13,x:M_IPRC ; enable DMA0 interrupt at priority

; level 1
movep #$2f,x:M_PCRC ; enable five pins for ESSI0
movep #$180000,x:M_CRA0 ; 24 bits per word, maximal frequency
movep #$01d12c,x:M_CRB0 ; synchronous normal mode, one bit clock

; three transmitters
movep #$fffffd,x:M_DOR2 ; DOR2 = -2
movep #$1,x:M_DOR0 ; regular increment
movep #$-buf_size,x:M_DOR1 ; for jumping back to the top of buffer
movep #$int_buf,x:M_DSR0 ; buffer top address in internal memory
movep #M_TX02,x:M_DDR0 ; transmitter 2 data register
movep #$(212*B1+fc0003),x:M_DCO0; the counter is divided to three

; B1 = (buf_size / 3) -1 -> DCOM
; DCOL = 2, DCOH = $3f

movep #$d65d20,x:M_DCR0 ; line transfer triggered by ESSI0 Tx
; x 3D with DOR0, DOR1 -> × 2D with DOR2
; DE is cleared at end of block
; interrupt is generated at the
; end of block
; channel priority 3 (doesn’t matter
; in the example)

I_DMA0
bset #23,x:M_DCR0 ; interrupt routine: start again

3-6 Using the DSP56300 DMA Controller MOTOROLA

SECTION 4

OPERATION OF MULTIPLE DMA
CHANNELS

Because a DMA channel can be triggered by one
of thirty-two sources, multiple DMA tasks can
be performed orthogonally or concurrently.
This section discusses use of multiple DMA
channels in applications.

MOTOROLA Using the DSP56300 DMA Controller 4-1

Operation of Multiple DMA Channels
4.1 INTRODUCTION .4-3
4.2 COLOR COMPRESSION EXAMPLE 1 .4-3
4.3 PRIORITIES BETWEEN CHANNELS. .4-5
4.4 COLOR COMPRESSION EXAMPLE 2 .4-6
4.5 CONTINUOUS MODE. .4-8

4-2 Using the DSP56300 DMA Controller MOTOROLA

Operation of Multiple DMA Channels

Introduction

4.1 INTRODUCTION

This section provides several examples that employ multiple DMA channels.

4.2 COLOR COMPRESSION EXAMPLE 1

Any DMA channel can be triggered by one of thirty-two sources: four external lines
(IRQA, IRQB, IRQC, and IRQD), twenty-two event sources from peripherals, and six
“end of block transfer of channel A triggers the start of work of channel B” triggers.
These last six modes are useful if two DMA tasks must be performed sequentially, or
when one DMA task is in progress while the core programs a second DMA channel with
all the parameters for a second task. When the first task is done, the second task starts,
and the core can program new parameters for the first DMA to be performed after the
second DMA channel is done. In this way, two DMA tasks can be orthogonal to each
other.

In color television, every pixel is represented by 3 bytes corresponding to the colors Red,
Green, Blue. In the PAL television system, the R,G,B representation is transformed to a
Y,U,V representation in which Y represents brightness and U and V represent the color
components according to the following equations:

Y = 0.299 * R + 0.587 * G + 0.114 * B (0.1)

U = (B - Y) / 2.03 (0.2)

V = (R - Y) / 1.14 (0.3)

By using the Y,U,V form, a 50% compression can be achieved, because, for every
2 × 2 pixels, instead of 4 bytes each to represent R, G, and B, only 4 bytes are required for
Y (one for each item) and one common byte each for U and V, without significantly
reducing the picture quality. Standards like CCIR-601, MPEG, and H.261 support this
Y, U, V representation. The data is stored according to the MPEG standard in 16-bit wide
words according to the following memory map.

ADDRESS DATA
000000 Y00, Y01
000001 Y02, Y03
000002 U0, V0
000003 Y10, Y11
000004 Y12, Y13
000005 U1, V1
000006 Y20, Y21
000007 Y22, Y23
000008 U2, V2
MOTOROLA Using the DSP56300 DMA Controller 4-3

Operation of Multiple DMA Channels

Color Compression Example 1

The representation in the screen memory is shown in Figure 4-1. A transfer from system
memory to screen memory of one line is shown in Figure 4-2.

Figure 4-1 Screen Memory Representation

Figure 4-2 Transfer from System Memory to Screen Memory

Y00 Y01 Y10 Y11

Y02 Y03 Y12 Y13

Y80 Y81 Y90 Y91

U0
V0

U1
V1

U8 U9
V8 V9

...

...

...

AA1371

Y00 Y01

Y02 Y03

U0 V0

Y10 Y11

Y12 Y13

U1 V1

Memory Map

Y00 Y01

U0 V0

Y10 Y11

U1 V1

Y20 Y21

U2 V2

Memory Map
Screen“System”

Y20 Y21

Y22 Y23

U2 V2

Y30 Y31

Y32 Y33

:

Y30 Y31

:

Channel #1 Single Transfer

Trig
ger

Channel #2 2D → Linear Transfer

Channel #2

Channel #2

(One Screen Line)

AA1372
4-4 Using the DSP56300 DMA Controller MOTOROLA

Operation of Multiple DMA Channels

Priorities between Channels
In the example code listed below, the first DMA channel is needed to transfer the first
data item of Y00,Y01 because it is irregular to the structure of other data items. The
second DMA channel is triggered by the first one and transfers from 2D to linear when
DCOL = 1 (i.e., one increments and one jumps).

movep #$2,x:M_DOR0 ; jump two places
movep #Sys_Mem,x:M_DSR1 ; address of first data item

; in System mem
movep #Line1,x:M_DDR1 ; address of first data item in Line mem
movep #$0,x:M_DCO1 ; transfer one data item
movep #$860240,x:M_DCR1 ; block transfer triggered by pin irqa_

; (assuming pin is connected to Vsync)
; clear DE after transfer
; x no update -> x no update
; no interrupt at end of block

movep #Sys_Mem+2,x:M_DSR0 ; address of U0,V0
movep #Line1+1,x:M_DDR0 ; address of second data item in Line mem
movep #$11f001,x:M_DCO0 ; DCOH = $11f = 287, DCOL = 1

; 288 pixel pairs, i.e. 576 pixels
; in line

movep #$c62a80,x:M_DCR0 ; block transfer triggered by DTD1
; clear DE after transfer
; x 2D with DOR0 -> x linear
; interrupt at end of block

4.3 PRIORITIES BETWEEN CHANNELS

Each DMA channel has a priority defined by bits DPR1–DPR0 in the DCR of that
channel. The priority can be 0, 1, 2 , or 3. Prioritization is needed because only one DMA
channel can issue a transfer in a single clock cycle due to the fact that there is only one
DMA Address Bus (DAB). The arbitration hardware in the DMA machine determines
which channel is the next to issue a transfer on a per access basis (i.e., when the
destination address is placed on DAB). If the active DMA channels have different
priorities, then the channel with the highest priority issues a transfer and all the others
wait. If there are some active channels with the same priority, a round-robin method is
used (i.e., each channel issues one word periodically). The selected channel priority is
used to compare the priority between the DMA and the core (discussed in Section 5.5
on page 5-6). Figure 4-3 on page 4-6 is an example of the priority between the channels.
In the example, channels 0 and 1 have priority level 0; channels 2, 3, and 5 have priority
level 1; and channel 4 has priority level 2.

MOTOROLA Using the DSP56300 DMA Controller 4-5

Operation of Multiple DMA Channels

Color Compression Example 2
Note: The round-robin algorithm promises a equality of transfer between channels
that have the same priority, but it does not assure that the number of words
transferred by channel A are exactly the same number of words transferred by
channel B in the same time. This is because if a third channel with higher
priority interferes in the middle, the system does not remember which channel
was the last to issue a word before that. Therefore, a sequence of
23232444444232 is possible. In such a sequence, channel 2 transfers 5 words
and channel 3 transfers only 3 words.

4.4 COLOR COMPRESSION EXAMPLE 2

The code presented in this section is an example of the same transfer from system
memory to screen memory as described in Section 4.2, but with a window size QCIF
(176 x 144 pixels). This size is a quarter of video recording quality in a screen. In this
case, the data of the QCIF window is first copied to another temporary buffer in the
format of system memory, and then the data is transferred again to the screen memory.

Because this process must be repeated, the first transfer must use 3D mode in order to
return to the start of the buffer in the memory system. The challenge is that this example
must use a counter with DCOL = 263, DCOM = 71 and DCOH = 0. This division can not
be implemented in one counter because 12 bits are needed for DCOL, and more than 6
bits are needed for DCOM. The solution implemented here makes the first transfer using
two channels with each transferring half of the block.

For the second transfer (from temp_buffer to system memory), the example must
transfer addresses 0 and 2, 3 and 5, and so forth. This is effected by using a second set of
DMA channel pairs that work in a round-robin fashion. The first channel transfers
addresses 0, 3, 6, and so forth; the second channel transfers addresses 2, 5, 8, and so forth.

Figure 4-3 Example of Multi-channel Operation

C
h0

 S
ta

rt
s

C
h1

 S
ta

rt
s

C
h2

 S
ta

rt
s

C
h3

 S
ta

rt
s

C
h4

 S
ta

rt
s

C
h4

 E
nd

s
an

d

C
h2

 E
nd

s

C
h3

 E
nd

s

C
h0

 E
nd

s

C
h5

 E
nd

s

C
h1

 E
nd

s

Round-robin

C
h5

 S
ta

rt
s

1 0 1 2 2 2 3 2 3 4 4 4 4 4 2 3 5 2 3 5 2 3 5 3 5 3 5 3 5 5 5 0 1 0 1 0 1 1 1 10 0 0

AA1373

4-6 Using the DSP56300 DMA Controller MOTOROLA

Operation of Multiple DMA Channels

Color Compression Example 2

Because they use the highest priority (3), other DMA channels can not ruin the exactness
of this round-robin. Both channels are triggered by DTD1 (i.e., the whole QCIF block is
transferred to the temporary buffer). In this example, minimum core intervention is
needed to reload channels 2 and 3 after half of the QCIF data is placed in the temp_buf
(with a jump back to start of temp_buf for the interlaced lines). Figure 4-4 illustrates the
DMA transfers in this example.

movep #264,x:M_DOR0 ; jump over half a line in system mem.
movep #-(528*36),x:M_DOR1 ; jump back to start of system mem.
movep #3,x:M_DOR2 ; jump of 3 in source temp_buf
movep #2,x:M_DOR3 ; jump of 2 in screen memory
movep #Sys_Mem,x:M_DSR0 ; address of first data in System mem
movep #Temp_buf,x:M_DDR0 ; address of first data in Temp_buf
movep #$023107,x:M_DCO0 ; DCOL = 176*1.5 - 1 = $107

; DCOM = 36 - 1 = $23, DCOH = 0 mode E
movep #Sys_Mem+528*36,x:M_DSR1 ; address after 36 double lines
movep #Temp_Mem+264*36,x:M_DDR1 ; address in temp_buf

; after 36 double
movep #$023107,x:M_DCO1 ; same as DCO2
movep #$a406a4,x:M_DCR0 ; block transfer triggered by irqa_

; (assuming pin is connected to Vsync)
; don’t clear DE after transfer
; priority level is 2
; x 3D, DOR0,DOR1 DCO-E -> y linear
; no interrupt at end of block

movep #$a426a4,x:M_DCR1 ; same but trigger by DTD0
movep #Temp_buf,x:M_DSR2 ; address of Y00,Y01
movep #Line1,x:M_DDR2 ; first address in screen memory
movep #Temp_buf+2,x:M_DSR3 ; address of U0,V0
movep #Line1+1,x:M_DDR3 ; second address in screen memory
movep #$c5f000,x:M_DCO2 ; DCOL=0, DCOH = 88*36 - 1(half QCIF)

Figure 4-4 QCIF Block Transfer Example

DMA0

DMA1

DMA2

DMA2
DMA3

DMA3

System Memory

Temp Buffer

Screen

AA1374
MOTOROLA Using the DSP56300 DMA Controller 4-7

Operation of Multiple DMA Channels

Continuous mode

movep #$c5f000,x:M_DCO3
movep #$862931,x:M_DCR2 ; both channels with same mode
movep #$c62931,x:M_DCR3 ; block transfer triggered by DTD1

; y 2D with DOR2 -> x 2D with DOR3
; priority level 3 (for round-robin)
; enable interrupt at channel 3
; (for new setting of DSR2,3 and DDR2,3
; to continue the transfer)

I_DMA3 jmp long_subroutine
long_subroutine:

checks which of the three settings is needed
update DSR2, DSR3, DDR2, DDR3, DCR2, DCR3 to continue transferring
rti

4.5 CONTINUOUS MODE

Each DMA channel can be in Continuous mode, depending on the value of the DCON
bit in the DMA Control Register (DCTR) for the channel. If this bit is set while
transferring data, then other channels with the same priority can not interfere until the
whole line or block is transferred (according to the transfer mode). However, enabled
channels with higher priority can access the bus and finish their word, line, or block in
spite of Continuous mode selection. Figure 4-5 is an example similar to Figure 4-1
on page 4-4 except for the fact that channel 5 is in continuous mode.

Note: If a channel has a high priority, but is waiting for a trigger, another active
channel that has data to transfer can do so, even if the first channel is in
Continuous mode. So, if the user designs a system in which a block is
transferred externally without interference as a word or line transfer, the
design should also ensure that the triggering is continuous.

Figure 4-5 Example of Multi-channel Operation with Continuous Mode

C
h0

 S
ta

rt
s

C
h1

 S
ta

rt
s

C
h2

 S
ta

rt
s

C
h3

 S
ta

rt
s

C
h4

 S
ta

rt
s

C
h4

 E
nd

s
an

d

C
h2

 E
nd

s

C
h3

 E
nd

s

C
h0

 E
nd

s

C
h5

 E
nd

s

C
h1

 E
nd

s

Continuous Mode

C
h5

 S
ta

rt
s

1 0 1 2 2 2 3 2 3 4 4 4 4 4 2 3 5 5 5 5 5 5 5 5 2 3 2 3 3 3 3 0 1 0 1 0 1 1 1 10 0 0

AA1375

Overrides Round-robin
4-8 Using the DSP56300 DMA Controller MOTOROLA

SECTION 5

DMA AND CORE CONTENTION

Because the DSP core and the DMA controller
can both access the internal memories
independently, there is the possibility that the
two can compete for access to the same space
simultaneously. The same is true for access to
the internal peripheral registers. Using the
DMA controller efficiently requires that the
programmer understand how to minimize such
access contention and also understand the
prioritization scheme that controls such
accesses if they are unavoidable.

MOTOROLA Using the DSP56300 DMA Controller 5-1

DMA and Core Contention
5.1 CONTENTION FOR INTERNAL MEMORY 5-3
5.2 CONTENTION FOR PERIPHERAL REGISTERS.5-3
5.3 PRIORITIES ON EXTERNAL ACCESS 5-3
5.4 PACKING/UNPACKING MODE .5-5
5.5 CORE ACCESSES THE DMA IN MID-OPERATION5-6
5.6 DMA INITIALIZATION AFTER RESET .5-7
5.7 WAIT INSTRUCTION .5-7
5.8 STOP INSTRUCTION .5-8
5.9 DEBUG MODE .5-8

5-2 Using the DSP56300 DMA Controller MOTOROLA

DMA and Core Contention

Contention for Internal Memory
5.1 CONTENTION FOR INTERNAL MEMORY

Memories in the DSP563xx family are dual access because both the core and the DMA
controller have separate address and data buses connected to the memories. The
memories are designed as small modules each having 1/4 K word (for RAM) or 3 K
words (for ROM). If the core and DMA access different memory modules, they can work
in parallel without interfering with each other. If, however, the DMA and core attempt to
access the same memory module, the DMA halts (its internal clocks are stopped) until
the core finishes its access to the module. Therefore, to get maximum throughput from
the DMA, it is advisable to ensure that the core and the DMA work on different memory
modules (i.e., never access the same module simultaneously).

Note: DMA access to internal memory does not reduce available core MIPS.

5.2 CONTENTION FOR PERIPHERAL REGISTERS

The DMA can only access the data registers of DSP563xx peripherals. These registers are
read-only or write-only by their nature. Typically, it is bad design practice to allow
simultaneous access to a data register by both the core and the DMA controller.
Although both core and DMA can read the same read-only data register in the same
clock cycle, and both get the correct value from it with no delay, if both the core and the
DMA write to the same write-only data register in the same clock cycle, only the core
data is written to the register and the data from the DMA is lost. Secondly, because
reading from or writing to a data register may affect some flags in a peripheral status
register, allowing double accessing prevents the user from determining the cause of a
status change.

5.3 PRIORITIES ON EXTERNAL ACCESS

As discussed in Section 4, every DMA channel has a priority defined in bits DPR[1:0] of
the channel DMA Control Register (DCTR). The priority of the currently selected
channel (which is, of course, the highest priority of the channels scheduled to transfer
data) is referred to as the current DMA priority. Because there is only one external port,
if the DMA is required to initiate an external access, its priority must be compared with
the core priority. The priority of the core is defined by the Core Priority (CP[1:0]) bits in
the Status Register (SR[23:22]). The relative priority between the DMA and the core is
defined by the Core-DMA Priority (CDP[1:0]) bits in the Operation Mode Register
(OMR[9:8]), as follows:

MOTOROLA Using the DSP56300 DMA Controller 5-3

DMA and Core Contention

Priorities on External Access
• If CDP[1:0] = 11, then DMA accesses always have lower priority than the core
accesses.

• If CDP[1:0] = 10, then DMA accesses always have the same priority as the core
accesses.

• If CDP[1:0] = 01, then DMA accesses always have higher priority than the core
accesses.

• If CDP[1:0] = 00, then the priorities of the DMA and core are compared
dynamically to decide which access is performed first.

If the DMA priority is programmed to be higher than the core priority (CDP[1:0] = 01),
then the DMA performs the external access and the core waits until the DMA finishes all
its required external accesses. If the DMA downloads a program from external to
internal memory, the core can get the external bus to initiate one access in the destination
slot of the DMA which does not need the external bus. However, if the core needs the
external bus for some memory space accesses, its performance degrades substantially. If
the DMA transfers a block from external memory to external memory, the core halts all
its activity the first time it needs the external bus until the DMA finishes all its task. This
mode of operation is useful only if the user must perform a critical task and it is
acceptable for the core to be halted for a long period. If the DMA priority is higher than
the core priority, and the DCON bit in the selected channel is set (i.e., Continuous mode
is selected), then the core is not allowed to initiate an access in the next slot after the
DMA has used the external bus. The Continuous mode is useful if the DMA is
transferring a block from external DRAM memory to internal memory (or vice-versa). If
the core were allowed to change the address during its access, this would result in a
page miss for every DMA access and the whole block transfer would require a longer
total time. However, if a DRAM refresh cycle is required, it is performed by the core
when needed even if the DMA priority is higher than core priority and the DCON bit is
set.

If the DMA priority is programmed to be equal to the core priority (CPD[1:0] = 10), then
if the DMA and core both require external access, the core performs all its external
accesses pertaining to the current instruction in the order P, X, Y, and then the DMA
performs its access (one word at a time).

If the DMA priority is programmed to be lower than the core priority (CPD[1:0] = 11),
then if the DMA requires an external access, it must wait until it gets a free slot in which
the core does not need the external bus.

In the Dynamic Priority mode (CPD[1:0] = 00), it is possible that a DMA channel may be
halted by the core having a higher priority in the source slot or the destination slot. If
another DMA channel with higher priority is triggered, this raises the DMA priority and
it can get the bus for finishing the halted transfer of the first channel (only if it was

5-4 Using the DSP56300 DMA Controller MOTOROLA

DMA and Core Contention

Packing/Unpacking Mode
started) and then the new channel gets the bus with equal priority or higher priority of
the core as programmed in its DPR bits.

Note: Even if the new channel doesn’t need external accesses, this push out of the
stuck word of the first channel occurs, and be seen on the external bus, in
order that the new channel is able to start working.

5.4 PACKING/UNPACKING MODE

The DMA can support external accesses to/from 8-bit wide external memory. This mode
is activated by setting Bit 7 (BPAC) of the Address Attribute Register (AAR) being used
for that DMA access. If this mode is selected, the DMA must program the external access
to be 2D or 3D with DCOL = 0 and DORi = 3. The DMA issues the addresses as jumps of
three (i.e., DAB, DAB + 3, DAB + 6, etc.). The Bus Interface Unit (BIU) halts the DMA
internal clocks and generates three consecutive accesses at DAB, DAB + 1, and DAB + 2
for each address. For the first access, the least significant byte of the data is written to the
eight least significant data pins of Port A, or these pins are sampled to generate the low
byte of data. For the second access, the middle byte of the data is written to the eight
least significant data pins of Port A, or these pins are sampled again to generate the
middle byte of the data. For the third access, the most significant byte of the data is
written to the eight least significant data pins of Port A, or these pins are sampled again
to generate the high byte of data.

Some comments on Packing mode:

1. Packing is considered for DMA accesses only, and ignored during core accesses.

2. DAB + 1 and DAB + 2 should not cross the AAR bank border otherwise improper
operation may result.

3. Arbitration between DMA channels on the external bus and between DMA and
core does not take place during the packing access (i.e., the chip treats this access
as one DMA external access with more wait states and does not stop it).

4. Arbitration on the external bus during the packing access is also not allowed
(i.e., the chip does not yield mastership of the bus until the whole packing access
is finished).

5. Packing mode is not allowed to Synchronous SRAM with zero wait states;
otherwise, improper operation may result.

6. The DMA is halted by the BIU for three times the programmed number of wait
states + 3.

MOTOROLA Using the DSP56300 DMA Controller 5-5

DMA and Core Contention

Core Accesses the DMA in Mid-Operation
Example of code using Packing mode (very similar to the code in Section 2):

M_TCSR0 EQU $ffff8f ; DSP56301 Timer0 control/status reg.
M_TLR0 EQU $ffff8e ; DSP56301 Timer0 load register
M_TCPR0 EQU $ffff8d ; DSP56301 Timer0 compare register
bclr #9,SR ; enable interrupt priority levels 3,2,1
bset #17,x:M_IPRC ; enable DMA2 interrupt at priority

; level 1
movep #$89,x:M_AAR0 ; AAR0 indicates to all external P space

; as static RAM and with packing mode
movep #$1fffe2,x:M_BCR ; 2 wait states in area 0 access
movep #$0,x:M_TLR0 ; initial value of the timer counter
movep #$num_comp,x:M_TCPR0 ; number of CLK/2 cycles until a trigger

; is generated
movep #$201,x:M_TCSR0 ; Timer0 enable in mode 0 + reload
movep #$3,x:M_DOR3 ; jumps of 3 between the addresses
movep #$ext_addr,x:M_DSR2 ; external address
movep #$int_addr,x:M_DDR2 ; internal address
movep #4096*(N-1),x:M_DCO2 ; DCOH = N-1 when N is number of 24 bit

; words to be stored; DCOL=0
movep #$e082ba,x:M_DCR2 ; block transfer triggered by timer0

; p 2D with DOR3 -> p linear
; DE is not cleared at end of block
; interrupt is generated at the
; end of block
; channel priority 0 (doesn’t matter in
; the example)

I_DMA2 movep (pointer1),x:M_DSR2 ; interrupt routine: prepare parameters
movep (pointer2),x:M_DDR2 ; for next download

5.5 CORE ACCESSES THE DMA IN MID-OPERATION

None of the DMA address registers (DSRi, DDRi, DORi) or the counter (DCOi) should
be written to by the core if it is not guaranteed that the channel using them is not in the
middle of processing data. This is because the operation of the DMA is asynchronous to
the core operation, and therefore the cycle in which the core writes to a register used by a
current DMA activity can not be guaranteed. However, all the DMA registers can be
read by the core in any stage and the value that is read reflects the status of the DMA in
the exact cycle of the read operation (and of course it can be updated right afterwards).
No control bit in DCRi register should be changed while the channel is active. The
correct way to change parameters of a DMA channel while in operation (e.g., to allocate
this channel to another task) is to disable it as follows:

bclr #M_DE,x:M_DCRi ; clear DE bit in DCR
jclr #M_DTDi,x:M_DSTR,* ; poll on Transfer Done

; to see that transfer was stopped
change DMA registers

5-6 Using the DSP56300 DMA Controller MOTOROLA

DMA and Core Contention

DMA Initialization after Reset
When a DMA channel is so disabled, the channel responds in one of the following two
ways:

1. If the channel is programmed by the TM[2:0] bits to work in Block Transfer or
Line Transfer mode and it is in the middle of a transfer, then the current word is
stored in the destination, and the block or line is stopped in the middle. If the
channel has captured a trigger but didn’t start transferring data because of low
priority compared to another channel, then the channel is stopped immediately
without starting the transfer (i.e., the request is ignored).

2. If the channel is programmed by TM[2:0] bits to work in Word Transfer mode,
and if a request was accepted, DTD is not asserted high until the current word is
transferred, even if it must wait until other channels with higher priorities finish
transferring a whole block before transferring the current word. If, however, the
channel is disabled before a request is asserted, DTD is asserted immediately.
This is because in Word Transfer mode, the DMA must support fast peripherals
(see Section 6) in which any request that is already generated must be handled
by the DMA.

5.6 DMA INITIALIZATION AFTER RESET

After hardware reset, all the peripherals and the DMA must be initialized. It does not
matter whether a peripheral is programmed first or the DMA channel triggered by this
peripheral is programmed first, because after the peripheral is initialized it can assert a
trigger and this trigger remains asserted until the DMA channel actually accesses the
peripheral data register. The same is true also for the HI32 because the DMA must assert
an enable line before the first trigger can occur. The only module that must be initialized
after its DMA channel is initialized is the timer, because it asserts one cycle trigger
regardless of DMA access to any register, and if the timer is initialized first, the first
trigger occurs earlier than expected.

5.7 WAIT INSTRUCTION

The WAIT instruction is defined as “Wait for Interrupt or DMA request”. Therefore,
DMA channels can be programmed to be triggered by peripherals and, after all the
needed channels are enabled by setting DE in the control registers, the WAIT instruction
is initiated. In this state, most of the internal clocks of the DSP56300 core and most of the
internal clocks of the DMA are halted. When a request from peripheral triggers a
programmed DMA channel, the core leaves the Wait processing state and the DMA
starts transferring the data item(s). If a WAIT instruction is decoded by the core while

MOTOROLA Using the DSP56300 DMA Controller 5-7

DMA and Core Contention

STOP instruction
the DMA is transferring data, the DMA prevents the core from entering the Wait
processing state. Therefore, when entering the Wait processing state, the user should
assure that no DMA channels is transferring data. This can be guaranteed by polling bit
DACT (Bit 8) of the DMA Status Register (DSTR) to make sure it is 0.

5.8 STOP INSTRUCTION

In the Stop processing state, all activity in the chip is stopped and all the clocks are
halted. Before entering Stop, the DACT bit in DSTR must be polled to check that the
DMA is not actually transferring data. After that, it must be also guaranteed (before
entering the Stop processing state), that the DMA is not activated unintentionally after
leaving the Stop processing state. Therefore, channels for which the request line is an
external pin (IRQA, IRQB, IRQC, IRQD) must be disabled (clear DE bit) before entering
the Stop processing state. Channels triggered by requests that can be asserted when
leaving the Stop processing state must also be disabled before entering the Stop
processing state (e.g., serial port transmitters, because the Stop processing state sets the
Transmitter Empty condition and, therefore, issues a false request). Another possibility
is to disable the peripherals individually (see the peripheral module descriptions in the
device User’s Manual), and then the DMA channels can remain active (DE bit set). More
complex is the situation with DMA channels that are programmed to be triggered by
HI32 (e.g., in the DSP56301). These channels must be disabled first and then the
appropriate DTD bits in DSTR must be polled for 1 (i.e., the channels are inactive). After
that, the HI32 itself must be programmed to initiate and individual reset by writing 000
in bits HM[2:0] in the DCTR and then polling the HACT bit in the DSR for 0. Only after
all these conditions are met, can the chip be programmed to enter the Stop state
correctly.

5.9 DEBUG MODE

Before entering the Debug mode, the chip checks to make sure that the current access is
not in the middle of operation because of contention or external access wait states. When
the access is finished (source or destination) the chip enters Debug mode. All the DMA
activity in this mode is preserved and the OnCE™ module operation cannot affect it.
Therefore, the DMA can resume normal operation after leaving the Debug mode.

5-8 Using the DSP56300 DMA Controller MOTOROLA

SECTION 6

HI32 DMA OPERATION

This section provides examples of how to use
DMA transfers with the HI32 in the Universal
Bus (UB) mode and the HI32 in the PCI Bus
mode.

MOTOROLA Using the DSP56300 DMA Controller 6-1

HI32 DMA Operation
6.1 INTRODUCTION .6-3
6.2 HI32 IN UNIVERSAL BUS MODE. .6-3
6.3 HI32 IN PCI BUS MODE .6-9

6-2 Using the DSP56300 DMA Controller MOTOROLA

HI32 DMA Operation

Introduction
6.1 INTRODUCTION

The DMA can be triggered from twenty-two different peripheral device sources. For a
regular peripheral request, the trigger to the DMA remains set until the appropriate
register at the peripheral is accessed by the DMA. Therefore, the peripheral can not
generate a second request until the first one is served. There is, however, another
method in which the peripheral (i.e., timer) generates a triggering pulse without
checking whether the DMA serves this trigger. The last four source devices defined by
the DRS bits (i.e., for DRS[4:0] = 111xx) are special because, in addition to the regular
behavior of all the requesting devices, they can serve as “fast request sources”. The “fast
peripheral” has a full duplex handshake to the DMA, enabling maximum throughput of
a trigger every 2 clock cycles. This mode is functional only in the Word Transfer mode
(DTM = 001 or 101). In the Fast Request mode, the DMA sets an “enable line” to the
peripheral. If required, the peripheral sends the DMA a one cycle triggering pulse.This
pulse resets the enable line. If the DMA arbitration mechanism decides by the priority
algorithm that this trigger can be served in the next cycle, the enable line is set again
even before the corresponding register in the peripheral is accessed. If the enable line is
asserted, this means that the DMA can respond to a new request in all cases (i.e., even if
its internal clocks are halted because of contention on the current executing transfer).

6.2 HI32 IN UNIVERSAL BUS MODE

The following sections describe the use of DMA transfers with the HI32 configured in
Universal Bus (UB) mode.

6.2.1 HI32 DSP Side Registers in Universal Bus Mode

When the HI32 is configured as Universal Bus (UB) mode, the DSP side registers are:

• DSP Control Register (DCTR)—Bits 22–20 of the DCTR are the HI32 Mode
bits (HM[2:0]). If HM[2:0] = 010, then the Universal Bus (UB) mode is selected. If
HM[2:0] = 011, then the Enhanced Universal Bus (Enhanced UB) mode is selected.
If HM[2:0] = 101, then the Self-configuration mode is selected. The
Self-configuration mode is a special mode in which the slave HI32 can program
its Host-side Registers in order to start working on the system bus. In UB mode,
Bits 19–13 control all other HI32 activities. Bits 6–0 control the interrupts in the
DSP and Host sides and flags to the Host side. These bits do not have to be
changed from their state after reset if the HI32 is controlled by the DMA
controller.

MOTOROLA Using the DSP56300 DMA Controller 6-3

HI32 DMA Operation

HI32 in Universal Bus Mode
• DSP Status Register (DSR)—The DSR contains some status bits reflecting the
value of bits in the HCTR and HCVR in the Host side. Bit 1 of this register is the
Slave Transmit Data Request (STRQ) bit. It is set if the slave transmit data FIFO is
not full. Bit 2 in this register is Slave Receive Data Request (SRRQ). It is set if the
slave receive FIFO is not empty.

• DSP Slave Transmit Data (DTXS) Register—The DTXS can be written by the
core or a DMA channel to transfer data from the DSP to the Host side Receiver
register HRXS. Between DTXS and HRXS there is a 6-level FIFO. In the Pre-fetch
mode (i.e., SFT = 0 in Host side register HCTR) the FIFO is used. In the Fetch
mode (i.e., SFT = 1), the FIFO is bypassed and DTXS is connected (after
synchronization) directly to HRXS.

• DSP Receive Data Register (DRXR)—The DRXR can be read by the core or DMA
to transfer data from the Host side register HTXR into the DSP. Between HTXR
and DRXR there is a 6-level FIFO.

6.2.2 HI32 DMA Operation in Universal Bus Mode

In the DSP56301, if the HI32 is connected in UB mode (or Enhanced UB mode), up to two
DMA channels can be used to interact with it. One DMA channel can be programmed to
be triggered by SRRQ = 1 (i.e., DRS = 11100 in the channel’s control register) to transfer
data from DRXR FIFO. Another DMA channel can be programmed to be triggered by
STRQ = 1 (i.e., DRS = 11110 in the channel’s control register) to transfer data to DTXS
FIFO. Any HI32 data transfer controlled by a DMA channel can be performed at the
highest level of DMA performance (i.e., one transfer every two DSP clock cycles).

Guidelines for such applications include:

• DMA channels triggered by the HI32 must be programmed to work in Word
Transfer mode (i.e., TM = 001 or TM = 101 in the channel’s control register).

• For the channel triggered by SRRQ, the source address must be programmed as
No Update mode and the DSR must point to the DRXR. The destination address
mode can be any (No Update, Linear, 2D, 3D).

• The channel triggered by STRQ must be programmed with destination address in
No Update mode and the DDR must point to the DTXS. Any of the source
address modes (No Update, Linear, 2D, or 3D) can be selected.

Note: Data coherency between the DSP side and the Host side can not be guaranteed
if all the above requirements are not met.

6-4 Using the DSP56300 DMA Controller MOTOROLA

HI32 DMA Operation

HI32 in Universal Bus Mode
Because of the handshake between the DMA and the HI32 (which is a fast peripheral),
the user can program the HI32 before the DMA or the DMA before the HI32 and correct
operation is guaranteed. To allocate a DMA channel that was connected to HI32 for
another task, the channel DE must be cleared and then polled on the appropriate DTD
bit in DSTR to assure that the channel is actually disabled. This process can take some
time because if a trigger from the HI32 was already accepted by the channel, the channel
can not set DTD until the word corresponding to this trigger can actually be transferred.
To put the chip in the Stop state, follow the rules in Section 5.8 on page 5-8.

6.2.3 DMA Code Example—HI32 in UB Mode

In the following example, two DSP56301 chips are connected to each other when chip A
is master and chip B is slave. Port A of the master is connected to Port B of the slave and
the slave is programmed as UB mode. Maximum frequency on the common bus is
achieved if the BS of the master is connected to HBS of the slave, CLKOUT of the master
is connected to EXTAL input of the slave, and, in the slave, the PLL multiplication and
division factors are 1. In this case, accesses on the common bus can use 2 wait states.

The following DSP56301 slave code example uses two DMA channels. One channel
reads the HI32 Receive FIFO and the other channel writes to HI32 Slave Transmit FIFO.
The two channels have equal high priority. Control of each word is achieved by the
handshake between the DMA and the HI32, but is totally transparent to the user. The 2D
address mode is used in the example in order to maintain circular buffers in the internal
memory. In this example, the master is the only master on Port A. The following codes
require the connections shown in Figure 6-1 on page 6-7 for correct code operation.

MOTOROLA Using the DSP56300 DMA Controller 6-5

HI32 DMA Operation

HI32 in Universal Bus Mode
M_DCTR EQU $ffffc5 ; DSP56301 HI32 DSP control register
M_DPMC EQU $ffffc7 ; DSP56301 HI32 DSP PCI master control

; register
M_DPAR EQU $ffffc8 ; DSP56301 HI32 DSP PCI address register
M_DRXR EQU $ffffcb ; DSP56301 HI32 DSP receive FIFO
M_DTXS EQU $ffffcd ; DSP56301 HI32 DSP slave transmit FIFO

movep #$5e8000,x:M_DCTR ; enter the self configuration mode
; by writing HM[2:0]=101
; HRSP=1, HDRP=0, HTAP=1 configures
; HRST and HTA active low
; HDRQ active high

movep #$000055,M_DPMC ; this is the base address to be
; transferred to CBMA as GB10-GB3

clr a
rep #4
movep a0,x:M_DPAR ; first dummy access writes to CSTR/CCMR

; second dummy access is to CCCR/CRID
; third dummy access writes to CLAT
; fourth dummy access writes $00550000
; to CBMA

movep #$0,x:M_DCTR ; leave configuration, enter personal
; reset

movep #$2e8000,x:M_DCTR ; slave in UB mode (HM=010)
movep #-bufr_size,x:M_DOR2 ; to roll over on receiver buffer
movep #-buft_size,x:M_DOR3 ; to roll over on transmitter buffer
movep #M_DRXR,x:M_DSR0
movep #rec_buf,x:M_DDR0
movep #bufr_size,x:M_DCO0 ; DCOH=0, DCOL= bufr_size
movep #tran_buf,x:M_DSR1
movep #M_DTXS,x:M_DDR1
movep #buft_size,x:M_DCO1 ; DCOH=0, DCOL= buft_size
movep #$eee140,x:M_DCR0 ; word transfer without clearing DE

; interrupt at end_of_block (for core to
; start processing on the buffer)
; priority level 3
; trig. by slave receiver FIFO not empty
; x no update -> x 2D with DOR2

movep #$eef230,x:M_DCR1 ; same as channel 0 but:
;trig. by slave transmitter FIFO not full
;x 2D with DOR3 -> x no update

6-6 Using the DSP56300 DMA Controller MOTOROLA

HI32 DMA Operation

HI32 in Universal Bus Mode
Figure 6-1 Synchronous Connection of DSP56301 Port A to DSP56301 HI32

D[23:0]

A[10:0]

TA

WR

RD

AA0

IRQA

HA[10:0]

HAEN

HD[23:0]

HTA

HWR

HRD

HIRQ

Port A

DSP56301

(Master)

HI32

DSP56301

(Slave)

(Master) (Slave)

HBSBS

HDAK

Vcc

HP31

Vcc

HP32

Vcc

HP19

Vcc

EXTALCLKOUT

RESET_

HRST

Power-on
Reset

BG

Vcc

BG
AA1376

MOTOROLA Using the DSP56300 DMA Controller 6-7

HI32 DMA Operation

HI32 in Universal Bus Mode
In the DSP56301 master code example listed below, two DMA channels are used. One
channel transfers a block of data from external memory to internal memory and the
other DMA channel transfers a block of data from internal memory to external memory.
Controllability is achieved by the connection of HTA of the slave to TA of the master.
Because the DMA priority is low, it does not interfere with the core’s external accesses.
To save wait states on the external bus, the first DMA is triggered by IRQA, which is
connected to the slave’s HIRQ. The RREQ bit in HCTR is set so that whenever there is
data in DRXR, the HIRQ pin is pulsed. In this way this DMA channel can access the bus
only when it really has data.

movep #$effc11,x:M_AAR0 ; accesses to slave DSP are to
; addresses X-$effxxx as SRAM

movep #$000002,x:M_BCR ; 2 wait states on the access
rep #12 ; this period is needed until
nop ; slave finishes the self
movep #-mas_size,x:M_DOR0 ; channel 4 is used to read HRXS data
movep #$eff2af,x:M_DSR4 ; the address of HRXS is composed

; of: 12 bits from master AAR0,
; 1 don’t care, 8 bits from
; slave’s CBMA + ‘111’

movep #mas_buf1,x:M_DDR4 ; DCOH = $fff, DCOL = mas_size
movep #($fff000+mas_size),x:M_DCO4
move #$eff2ac,r0 ; the address of HCTR of the slave
movep #mas_buf2,x:M_DSR5 ; HTXR address is the same as HRXS
movep #$eff2af,x:M_DDR5
movep #($fff000+mas_size),x:M_DCO5 ; RREQ=1 in HCTR of the slave
bset #2,x:(r0) ; write RREQ=1 on the slave
movep #$d80201,x:M_DCR5 ; software triggered block

; interrupt at the end of block
; priority level 0
; y 2D with DOR0 -> x no update

movep #$c80044,x:M_DCR4 ; word transfer triggered by IRQA
; interrupt at end_of_block
; priority level 0
; x no update -> y 2D with DOR0

6-8 Using the DSP56300 DMA Controller MOTOROLA

HI32 DMA Operation

HI32 in PCI bus mode
6.3 HI32 IN PCI BUS MODE

The following sections describe the use of DMA transfers with the HI32 configured in
PCI Bus mode.

6.3.1 HI32 DSP Side Registers in PCI Bus Mode

When the HI32 is configured as PCI mode, the DSP side registers are:

• DSP Control Register (DCTR)—Bits 22–20 of the DCTR are the HI32 Mode bits
(HM[2:0]). If HM[2:0] = 001, then the mode is PCI. If HM[2:0] = 101, then the
mode is Self-configuration mode. The Self-configuration mode is a special mode
in which the slave HI32 can program its Host-side Registers in order to start
working on the system bus. Bits 19–13 are ignored in PCI mode. Bits 6–0 controls
the interrupts in the DSP and Host sides and flags to the Host side. These bits do
not have to be changed from their state after reset if the HI32 is controlled by the
DMA controller.

• DSP PCI Control Register (DPCR)—The DPCR controls the HI32 PCI interrupts
and interface logic.

• DSP PCI Master Control Register (DPMC)—The DPMC generates the two most
significant bytes of the 32-bit PCI transaction address and controls the burst
length and data transfer format.

• DSP PCI Address Register (DPAR)—The DPAR generates the two least
significant bytes of the 32-bit PCI transaction address, the PCI bus command, and
the PCI bus byte enables.

• DSP Status Register (DSR)—The DSR contains some status bits reflecting bits of
registers HCTR and HCVR in the host side. Bit 1 in this register is Slave Transmit
Data Request (STRQ). It is set if the slave transmit data FIFO is not full. Bit 2 in
this register is Slave Receive Data Request (SRRQ). It is set if the there is data in
the receive FIFO that was read by the HI32 slave.

• DSP PCI Status Register (DPSR)—The DPSR contains status bits and flags that
the DSP56300 core can examine when the HI32 is in PCI mode. Bit 1 in this
register is Master Transmit Data Request (MTRQ). It is set if the master transmit
data FIFO is not full. Bit 2 in this register is Master Receive Data Request (MRRQ).
It is set if there is data in the receive FIFO that was read by the HI32 master.

• DSP Master Transmit Data FIFO (DTXM)—The DTXM is the data register that
can be written by the core or DMA for transferring data from the DSP to the Host
side register HRXM. Between DTXM and HRXM there is a 4-level or 8-level FIFO

MOTOROLA Using the DSP56300 DMA Controller 6-9

HI32 DMA Operation

HI32 in PCI bus mode
(depending whether all the 32 bits of PCI data are written to the FIFO). In the
Pre-fetch mode (i.e., the bit SFT = 0 in the host side register HCTR) the FIFO is
used. In the Fetch mode (i.e., SFT = 1), the FIFO is bypassed and DTXS is
connected (after synchronization) directly to HRXS.

• DSP Slave Transmit Data (DTXS) Register—The DTXS is the data register that
can be written by the core or DMA for transferring data from the DSP to the host
side register HRXS. Between DTXS and HRXS there is a 3-level or 6-level FIFO
(depending on whether all the 32 bits of the PCI data are written into the FIFO). In
the Pre-fetch mode (i.e., bit SFT = 0 in the host side HCTR) the FIFO is used. In the
Fetch mode (i.e., SFT = 1) the FIFO is bypassed and DTXS is connected directly
(after synchronization) to HRXS.

• DSP Receive Data Register (DRXR)—The DRXR is the data register that can be
read by the core or DMA for transferring data from the host side HTXR into the
DSP. Between HTXR and DRXR there is a 6-level FIFO.

6.3.2 HI32 DMA Operation in PCI Mode

In the DSP56301, if the HI32 is connected in PCI mode, up to three DMA channels can be
used to interact with it. The first DMA channel can be programmed to be triggered by
STRQ = 1 in the DSR (i.e., DRS = 11110 in the channel’s control register) to transfer data
to DTXS FIFO. A second DMA channel can be programmed to be triggered by MTRQ=1
in DPSR (i.e., DRS = 11111) to transfer data to DTXM. A third DMA channel can be
programmed to be triggered by SRRQ = 1 in DSR (i.e., DRS = 11100) or by MRRQ = 1 in
DPSR (i.e., DRS = 11101) to transfer data from DRXR FIFO. Because only three FIFOs
exist in the HI32, mixed data can be valid in the receive FIFO both for master receive and
slave receive. Only one type can be handled by the DMA and the other one must be
handled by the core interrupts or polling.

General guidelines for this type of operation include:

• The DMA channels that are triggered by the HI32 must be programmed to work
in Word Transfer mode (i.e., TM = 001 or TM = 101 in the channel’s control
register).

• The channel triggered by SRRQ or MRRQ must be programmed with source
address as No Update mode and the DSR to point on DRXR. The destination
address mode can be any (No Update, Linear, 2D, or 3D).

• The channel triggered by STRQ must be programmed with destination address as
No Update mode and the DDR to point on DTXS.

6-10 Using the DSP56300 DMA Controller MOTOROLA

HI32 DMA Operation

HI32 in PCI bus mode
• The channel triggered by MTRQ must be programmed with destination address
as No Update mode and the DDR to point to DTXM. The source address mode for
both channels can be any (No Update, Linear, 2D, or 3D).

Note: Coherency of data between the DSP side and the host side can not be
guaranteed if all these items are not met.

Because of the handshake between the DMA and the HI32, which is a fast peripheral, the
user can program the HI32 before the DMA or the DMA before the HI32 and correct
operation is guaranteed. To allocate a DMA channel that was connected to HI32 for
another task, clear the DE of the channel and then poll the appropriate DTD bit in the
DSTR to assure that the channel was actually disabled. This process can take some time
because if a trigger from the HI32 was already accepted by the channel, the channel does
not set DTD until the word correspond to this trigger can actually be transferred. To put
the chip in the Stop state, follow the rules in Section 5.8 on page 5-8.

6.3.3 DMA Code Example—HI32 in PCI Bus Mode

In the following example, two DSP56301 chips are connected to the PCI bus as two
agents. The PCI bus frequency is 33 MHz and the internal frequency of each DSP56301
must be at least 5/3 of this frequency. The same code can be written to both devices. In
the example, DMA channel 0 transfers a buffer from internal memory to DTXM, channel
1 transfers the slave received data from DRXR to internal memory, and channel 2
transfers a buffer from internal memory to DTXS. Master received data in DRXR is
handled by interrupts. All the circular buffers in the internal memory are of equal size.
For the slave receive and slave transmit transactions, the only requirement is initializing
the DMA channels. For the master transmit transaction, the address phase is handled by
interrupt I_HPMA. For the master receive transaction, all handling is through interrupts
I_HPMA and I_HPMR. All the buffers are transferred repeatedly. Of course, in a true
system, some method of semaphore or scheduling should be used to decide when the
master actually wants to transmit or receive data.

MOTOROLA Using the DSP56300 DMA Controller 6-11

HI32 DMA Operation

HI32 in PCI bus mode
Figure 6-2 Connection of DSP56301 to PCI Bus

HAD31-HAD0

HC3/BE3-HC0/HBE0

HIRDY

HTRDY

HSTOP

HPAR

HDEVSEL

HPERR

HSERR

HREQ

HGNT

HIDSEL

HRST

HCLK

HAD31-HAD0

HC3/HBE3-HC0/HBE0

HFRAME

HIRDY

HTRDY

HSTOP

HPAR

HDEVSEL

HPERR

HSERR

HREQ

HGNT

HIDSEL

HRST

HCLK

HI32

DSP56301DSP56301

(initiator/target) (target/initiator)

HLOCK HLOCK

HINTA HINTA

HFRAME

P
C

I B
us

AA1377

6-12 Using the DSP56300 DMA Controller MOTOROLA

HI32 DMA Operation

HI32 in PCI bus mode
M_DCTR EQU $ffffc5 ; DSP56301 HI32 DSP control register
M_DPCR EQU $ffffc6 ; DSP56301 HI32 DSP PCI control register

M_DPMC EQU $ffffc7 ; DSP56301 HI32 DSP PCI master control
; register

M_DPAR EQU $ffffc8 ; DSP56301 HI32 DSP PCI address register
M_DPSR EQU $ffffca ; DSP56301 HI32 DSP PCI status register
M_DRXR EQU $ffffcb ; DSP56301 HI32 DSP receive FIFO
M_DTXM EQU $ffffcc ; DSP56301 HI32 DSP master transmit FIFO
M_DTXS EQU $ffffcd ; DSP56301 HI32 DSP slave transmit FIFO

org p:I_RESET
jmp >START
org p:I_HPMR : this is the interrupt Host PCI

; master receive
movep x:M_DRXR,x:(r6)+
org p:I_HPMA ; this is the interrupt Host PCI

; master address
jsr >HPMA_

org p:START
move #$0,sr ; enable interrupts
bset #1,x:M_IPRP ; HI32’s IPL=1
movep #$500000,x:M_DCTR ; enter the self configuration mode

; by writing HM[2:0]=101
movep #base_addr,x:M_DPMC ; this is the base address to be

; transferred to CBMA
movep #$000006,x:M_DPAR ; write to CSTR/CCMR BM=1,MSE=1
movep #$0,x:M_DPAR ; dummy write to CCCR/CRID
movep #$00f800,x:M_DPAR ; write to CLAT
movep #$0,x:M_DPAR ; write data from DPMC to CBMA
movep #$0,x:M_DPMC ; return to personal reset state HM=000
movep #$040014,x:M_DPCR ; MACE=1, MAIE=1, MRIE=1
movep #$100000,x:M_DCTR ; PCI mode (HM=001)

move #buf_size,m6 ; initialization of the circular buffer
move #int_buf_mr,r6 ; for master receive (handled by I_HPMR)

; address int_buf_mr should be with
move #buf_size,r7 ; leading log2(buf_size-1) zeros
movep #-buf_size,x:M_DOR3
movep #int_buf_mt,x:M_DSR0
movep #M_DTXM,x:M_DDR0
movep r7,x:DCO0
movep #$aefa30,x:M_DCR0 ; DCOH=0, DCOL= buf_size-1

; word transfer triggered by MTRQ
; no interrupt at end of block
; priority level 3
; x 2D with DOR3 -> x no update

movep #M_DRXR,x:M_DSR1
movep #int_buf_sr,x:M_DDR1
movep r7,x:M_DCO1 ; same as DCO0

MOTOROLA Using the DSP56300 DMA Controller 6-13

HI32 DMA Operation

HI32 in PCI bus mode
movep $aee1c4,x:M_DCR1 ; word transfer triggered by SRRQ
; no interrupt at end of block
; priority level 3
; x no update -> y 2D with DOR3

movep #int_buf_st,x:M_DSR2
movep #M_DTXS,x:M_DDR2
movep r7,x:M_DCO2 ; same as DCO1
movep #$aef231,x:M_DCR2 ; word transfer triggered by STRQ

; no interrupt at ens of block
; priority level 3
; y 2D with DOR3 -> x no update

HPMA_
jset #1,x:M_DPSR,PCI_RD ; if MTRQ=1 the master transmit FIFO

; is empty and therefore master
; transmit transaction should not
; occur. In this case because I_HPMA
; was generated, it must be that the
; master receive FIFO is not full and
; PCI master receive transaction can
; occur

movep #$(3f0000+s_ad_h),x:M_DPMC ; FC=0, BL=$3f+1 = 64 in write
; trans.
; with PCI slave address s_ad_h

movep #$(070000+s_ad_l),x:M_DPAR ; BE_=0000, C=0111 (memory wr),
; addr=slave address low register

rti
PCI_RD

movep #$(2f0000+s_ad_h),x:M_DPMC ; FC=0, BL=$2f+1 = 48 in rd.
; trans.
; with PCI slave address s_ad_h

movep #$(060000+s_ad_l),x:M_DPAR ; BE_=0000, C=0110 (memory rd),
rti ; addr=slave address low register

6-14 Using the DSP56300 DMA Controller MOTOROLA

How to reach us:
USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
(303) 675-2140
1-800-441-2447

Mfax™:
RMFAX0@email.sps.mot.com
TOUCHTONE (602) 244-6609

JAPAN:
Nippon Motorola Ltd.
SPD, Strategic Planning Office
4-32-1, Nishi-Gotanda
Shinagawa-ku, Tokyo 141, Japan
81-3-5487-8488

TECHNICAL RESOURCE CENTER:
1 (800) 521-6274

ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.
8B Tai Ping Industrial Park
51 Ting Kok Road
Tai Po, N.T. Hong Kong. 852-26629298

INTERNET: http://www.motorola-dsp.com

DSP HELPLINE: dsphelp@dsp.sps.mot.com

APR23/D

	Cover
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	DMA Usage Basic Examples
	Multi-Dimensional DMA Transfers
	Operation of Multiple DMA Channels
	DMA and Core Contention
	HI32 DMA Operation
	Back Cover

