
Writing new functional blocks for FIBULA

A block is an assembly text file
The user may write new custom blocks that will be recognized by the compiler.
Each block is a separate text file with the extension “.asm” . It contains a macro-definition whose name
is same as the file name, without extension.

Example: the file “myfilter.asm” has this form

;; Block description
;; …
myfilter macro name,arg2,arg3,…

. . . .
<asm instructions>
. . . .
endm

In order to be found by the compiler, the file must be stored in the same directory as the main program
which is to be compiled. Alternatively, one may store it in FIBULA\USERLIB\ if this block is of some
utility for other users. A block in USERLIB with the same name as a reference macro (from LIB or
SYSLIB) will have priority, that means that you may modify the behavior or customize a block, simply
by storing a modified copy of it inside USERLIB.

About names
Each block has a unique name that may not be a reserved name. (See Help|Reserved names)
Each block must have “name” as first symbolic argument. At the time the macro is expanded the user
must assign a unique instance name by substituting a unique string to name. Each symbol defined
within the macro must contain this instance name. This is done in the following manner:
Suppose you defined the symbol “there” as a destination for a jump, just replace it by

name_there
the backslash “\” serves as a symbol concatenation operator, which will allow the assembler to
substitute the instance name (1st argument of the macro) to name.
When blocks are using other blocks in their definition (multi level nesting), the nested blocks must
have names beginning with “name_...”. While proceeding this way, it becomes easy to the user to
access any variable buried into a block by evoking it’s unique name. For example, in a radio receiver
application, you may attain the local oscillator frequency by evoking

radio_rf_mixer_oscillator_freq

Internal variables and constants
Do not attempt to reserve variables / constants with DS / DC directives. Use these special macros
instead:
 var name[,initial_value] reserve a 24 bit variable in X:
 vard name[,initial_value] reserve a 48 bit (double) variable
 varc name[,initial_value_re,initial_value_im,c] reserve a complex var
(cartesian)
 varc name[,initial_value_amplitude,initial_value_phase,p] “ “ “
(polar)

 const name,value constant definition (immediate addressing)
 coef name,value create a 24 bit constant in Y:
 coefd name,value create a 48 bit (double) constant in Y:
 coefc name,value_re,value_im,c] create a complex const (Cartesian)
 coefc name[,value_amplitude,value_phase,p] create a complex const (Polar)

 buf name,field,size reserve a buffer (field = x,y,l,p)
 bufm name,field,size reserve a modulo buffer

Debugging and context saving support

When you are writing assembly instructions in your macro, you have to precise which registers have
been modified. For that you just write at the end of your macro:
 u a saves A2, A1, and A0
 u x saves X0 and X1
 u r0 saves R0 and M0

You can also support step by step debugging at the block level:

mymac macro name,…
 dbgdisa disable stepping inside the block
 ….
 dbgena enable stepping
 dbgw MYMAC stop here and display “MYMAC:”
 dbg name_in display interesting variables
 dbg name

 endm

