
Teaching Real Time Signal Processing
in a friendly environment.

Jean-Marie ORY

Ecole Supérieure des Sciences et Technologies de l'Ingénieur de Nancy
2, rue Jean Lamour F-54500 Vandoeuvre les Nancy

Abstract

In order to answer to the specific needs of
fast process control and instrumentation we
developed a Digital Signal Processing card
around the DSP56309 processor from
Motorola. We are also using this card for
teaching Real Time Signal Processing in
our school.

In order to make it easy to program by
anybody while preserving the whole
processor power, we have written a very
simple language based on the
interconnection of functional blocks. In this
paper, we describe the language genesis
and how we use it at school for practical
works.

1. Introduction

Most Digital Signal Processor (DSP)
cards available on the market are dedicated
either to the communications or to the audio /
video markets. A few are designed for
controlling electrical motors. We found it worth
developing a universal autonomous DSP card
which would both have fast control and
accurate metrology features, and which could
withstand harsh industrial environments. This
card is named mu.psi (Fig. 1) and is
manufactured by Arnatronic, a local

electronics company specialized in power
control (see www.arnatronic.com).

At school, we are using this card to teach
Real Time Signal Processing, but of course,
that should not become a tedious assembly or
C language exercise. Therefore we had to
develop a specific compiler which converts a
project description based on functional blocks
into near-optimal native machine code.

Fig. 1 The "mu.psi" DSP card

2. The "mu.psi" DSP hardware

The card is built around the DSP56309
from Motorola which has been chosen for its
high (24 - 48 bit) resolution, its speed (100
DSP-MIPS) and its triple memory space
Harvard architecture allowing efficient parallel
data transfers. The chip has 102Kbyte internal
RAM, 6 DMA channels, 5 interrupts, 3 high

12th EAEEIE conference, Nancy, 2001 2

resolution timers, 2 synchronous serial ports,
one asynchronous serial port, one parallel
port, and a JTAG test and emulation port.

External components consist in a 256Kbyte
flash e2prom for resident debugger,
application programs and constant data, two
12 bit AD converters, and two 12 bit DA
converters. Sampling rates can be
programmed from 1Hz to 1MHz.

Since this card is aimed at driving Kilo-
Ampere power converters, a particular
attention has be brought to security and noise
immunity.

3. A textual block language

DSP design tools are seldom satisfactory.
This is due in our opinion to 2 major reasons:

• The description of a RT signal
processing algorithm is fundamentally
different from a microcontroller or CPU
program. A conventional CPU program can
be best described by its program flow, while
a DSP program is best described by its data
flow. Some data flow description languages
have well been developed in the past (e.g.
SILAGE or Synchronous Data Flow), but they
hardly emerged within the DSP programmers
community .

• Digital Signal Processors have many
different architectures, thus it is difficult to
program them in a standardized way

3.1. Usual DSP programming tools

Most of the time, the programmer who
wants to get the maximum efficiency out of his
DSP has to use assembly language.
However there is nowadays a quasi dogmatic
attitude which preaches that everything should
be programmed in C++. In that case, the
tradeoff in code efficiency would be
compensated by choosing a more powerful
DSP chip.

Many constructors propose several
sophisticated graphical environments with
visual object programming, source debugging

capability, simulation etc. ... Most of the time,
these platforms support different DSP chips.
Therefore, they cannot generate optimal
native machine code.

3.2. Design with functional blocks

Actually DSP design looks more like to
analog design. One will acquire a signal, filter
it, analyze it, measure it, transmit it etc. ...
Each elementary operation can be described
as an independent functional block with inputs
and outputs. Connecting blocks to each other
defines the data flow. Block execution is
triggered by the availability of data.

Programming in such a way makes
projects much more understandable than
conventional languages do. Now let's try to
answer to the question:

"Is it possible to generate near optimal
DSP machine code in this way ?"

3.3. Compiler specifications

• Assembly language basement
In order to exploit the full potential of the

machine, each individual block function should
be written in assembly language.

• All data structures are static
 Since execution speed is the most

important factor, time consuming stack
operations other than subroutine calls and
interrupts are prohibited.

• Blocks hierarchy
Since big blocks would sometimes lead to

inextricable code, a big block should be made
of several smaller blocks connected together
and so on until we reach the elementary
"atomic" block level. This involves that splitting
into smaller blocks and connecting shouldn't
introduce any tradeoff in the block's code
performance.

• Encapsulation:
The invocation of one block should have

following consequences:
Reserving the required H/W resources
Reserving variables

12th EAEEIE conference, Nancy, 2001 3

Creating the constant data and tables
Generating an initialization code segment
Generating the real time code segment
Installing new routines or ISRs if any
Providing context information
Providing timing information
• Naming convention, heritage
Each block has a unique name; sub-blocks

names are generated by concatenating the
parent block name with different strings, in
other words, they inherit their names from
parent block names. This also applies to
embedded data structures naming. This
convention insures different block names at
any level, thus all internal variables are
accessible at any depth. This also makes
blocks hierarchy readable. For example a
DSP radio receiver could contain following
internal blocks:

Level Block name
1 radio
2 radio_rf
3 radio_rf_mixer
4 radio_rf_mixer_oscillator
5 radio_rf_mixer_oscillator_pll
6 radio_rf_mixer_oscillator_pll_phasecomp

3.4. Assembler advanced features

The Motorola DSP relocatable macro
assemblers have several advanced features
which allow an efficient implementation of a
textual functional block language:

• Macros with formal arguments
• Macros can be nested at any level
• Macros defined into macro-libraries
• Conditional assembly
• Sections with global / local attributes
• Name length up to 512 characters
• Embedded scientific calculator
• Cycle count at assembly time

3.5. Language syntax

Functional Blocks are described by
assembly macros. A block invocation would
therefore have following syntax:

[label] funct name,arg1,arg2,...,argn

where:
label is an optional label
funct is the function performed by this block
name is the unique identificator associated with
 this implementation of funct.
arg1,..,argn are parameters passed to funct

The arrangement of block invocations
defines in which order real time data should
be processed.

Connections define data flow paths. A
connection syntax is:

cn source,destination
where
source is a block's output name
destination is another block's input name

source must have been defined before
invoking the connection.

Optimal code is generated if destination
has been defined prior the destination block
invocation, but this condition is not
compulsory.

If the programmer wants to get optimal
code in any configuration, he/she may
predefine block outputs by:

var name[,iv] for single 24b types
vard name[,iv] for double 48b types
varc name[,re,im] for complex types

 varcd name[,re,im] for double complex
where
name is the output name of a later defined block
iv or re:im is the optional variable initial value at
program startup

Then, he/she would define all the
connections and finally define the blocks
execution sequence.

12th EAEEIE conference, Nancy, 2001 4

4. Example: band-pass filter

Fig. 2 Simple iir filter example

; filter example program
cn ad1,da1
cn ad1,filter_in
cn filter,da2

loop
ada 1e5
iir2 filter,bp,440.0,1000.,abs
goto loop

In the example described above, the ada
block function acquires 2 analog signals and
updates 2 DA converters at the specified
sampling rate 1e5 (Hertz) given as argument;
ada is a special case where no name has to
be provided because this block may not be
duplicated. Therefore output and input
variables have predefined names called ad1,
ad2, da1,da2 respectively.

At execution ada waits until samples are
present. Note that other AD acquisition
methods would be possible: irqada executes
an interrupt service routine on sampling
events; addma uses a DMA channel to
perform fast AD acquisitions directed into a
memory buffer.

Connecting ad1 to da1 means that
converter da1 should be updated with the
value acquired on ad1 converter. The da1
analog output is in that case a signal used to
verify that analog acquisition does work.

filter_in is the input name of the iir2 block
named 'filter'; the connection between ad1
and filter_in means that the ad1 signal is
actually the filter input.

filter is the filter's output which is
connected to the da2 converter.

The iir2 block is a second order recursive
filter which has following syntax:

iir2 name,type,freq,q,mode
where

name is the identification of this iir2 instance
type defines which filter type to perform; type may be
one of following strings: lp, bp, hp, bs corresponding
respectively to low pass, band pass, high pass, and
band stop.
freq is the characteristic frequency of the filter
q is it's quality factor defined as in a R-L-C circuit
mode expresses whether freq is a relative or absolute
value. If relative, freq is given as a fraction of Fs/2
where Fs is the sampling frequency. If absolute, freq is
given in Hertz. (Note that this implies that the compiler
knows the value of the actual block's execution
frequency).

The goto macro is a simple branch to the
specified label.

5. Available block functions

Input / output Arithmetic
Analog ad-da, polling Gain
Analog ad-da, interrupt Sum of weighted inputs
Analog ad-da, DMA Multiply, divide
PWM polling Schmitt trigger
PWM interrupt
RS232 polling Functions
RS232 DMA Trigonometric

Polynomial
Software Timers Square root, Log, Decibel

Integer single shoot 1D Table read/interpolate
Integer periodic 2D Table read/interpolate
Fractional single shoot
Fractional Periodic Control

Delay
String handling Linear PID

Fractional to decimal string Adaptive neural network
controller

Integer to decimal string 1D, 2D Piece wise linear
adaptive model

Integer to hex string 1D, 2D Polynomial adaptive
model

Decimal string to fract.

ad1

da2

da1

ad2

ada

iir2
'filter'
440Hz

band pass

Analog
input

Analog
outputs

100 KHz

12th EAEEIE conference, Nancy, 2001 5

Block functions (continued)

Signal generators
Complex signals handling

Saw tooth, Triangle Complex multiply
Rectangle, bipolar PWM Complex exponential

generator, complex PLL
Sine / cosine Hilbert Transformer
Random uniform Complex IIR, FIR filters
Random gaussian Complex oscillator

Spectrum analyzer dB,
power, amplitude modes

Filters
1st order IIR lp, hp Boolean
2nd order IIR lp, bp, hp, bs Flag set, clear, toggle
FIR filter Jump on (no) flag
Nonlinear Test-clear-and-jump
LMS adaptative FIR Wait on flag

6. Some lab experiments

Here are some examples of using the
language for teaching signal processing:

6.1. Sampling and aliasing

The very first contact of the student with a
RT discrete system will consist in observing a
sine wave in its analog and sampled forms:

Fig. 3 Viewing the aliasing effect

Then, they will have a frequency domain
explanation of the aliasing effect if they
connect a software spectrum analyzer at the
sampled signal source:

Fig. 4 Aliasing effect in the frequency
domain

6.2. Filters

FIR filters are introduced by studying the
frequency to phase relationship introduced by
a simple delay line:

Fig. 5 Phase shift of a delay line

ad1 da1 Y2

Y1

Generator
11 KHz Oscilloscope

10KHz

cn ad1,da1

loop ada 1e4
goto loop

cn ad1,da2
loop

specan 1e4,1024,pow,r,f
goto loop

ad1 da1 Y2

Y1

Generator
11 KHz Oscilloscope

10KHz

da2

specan

ad1 da1 Y2

Y1

Generator Oscilloscope

100KHz

da2

Delay
z-100

cn ad1,dl_in
cn ad1,da2
cn dl,da1

loop ada 1e5
delay dl,100
goto loop

12th EAEEIE conference, Nancy, 2001 6

Then they will experiment what happens if
we add or subtract the delay line input and
output signals (comb filters) etc..

One pleasant experiment is using an LMS
adaptive FIR filter to get rid of echoes, which
can be demonstrated by suppressing Larsen
effect between a loudspeaker and a
microphone.

6.3. Non linear control

Non linearities can be obtained in several
ways. The most trivial is saturation.

Another one is a polynomial function.
Polynomials are easy to generate with a DSP
and they consume few execution time.

Any general 1D or 2D function can be
easily obtained by the Table Read and
Interpolate block. In a 2D table, if one of the
entries "X" is a periodic saw tooth and the
other one "Y" is an independent control input,
we can produce a progressive change of a
periodic wave form (morphing).

Students will observe the harmonics
generated at a NL system output when
excited with a sine wave at the input. They will
then observe stability conditions in a recursive
NL system and use the first harmonic method.

Adaptive NL control can be realized with
the Neural Network block. We can for instance
tell to the network that we would like to get a
sine output while the input is an asymmetric
saw tooth.

Chaotic systems can easily be realized.
Students can observe stability basins as 2D
images on an X-Y oscilloscope display.

6.4. Digital communications

Real time modulation and demodulation
can be realized at high frequencies with
functional blocks.

For instance, AM demodulation can be
realized in the ideal way by using a Hilbert
transformer associated with a complex PLL:

AM: x(t) = (1+m(t))Cos(ωt)
Hilb: xH(t) = (1+m(t))exp(j ωt)

PLL: y(t) = exp(j ωt)
Demod: xH(t) x y*(t) = 1+m(t)

A software superheterodyne receiver has
been demonstrated in the LW range.

Modem coding and noise effects are
shown using V32 QAM modulator. A French
literature text is encoded into a flow of 4 bit
symbols, these symbols are then QAM
modulated, polluted by a variable amount of
noise, demodulated, decoded and displayed
on a screen. Students observe the increase of
errors within the received text when noise
disks begin to hit each other on the screen of
the oscilloscope.

7. Industrial applications

We used our functional block language
within a huge industrial control application:
An intelligent TIG welding machine

A single mu.psi card controls all the
functions of a latest generation Tungsten Inert
Gas welding machine. Basically the DSP has
to control a 80KHz Pulse Width Modulator
which is the command input of a 600 Ampere
inverter. The inverter output is an AC time
varying wave form current source. The
precision is better than 1%. Since the arc is a
non linear time varying process, a polynomial
adaptive learning controller has been
developed. Many additional blocks are
necessary: multiple working modes,
securities, electrode thermal model, man-
machine interfaces, etc. The whole
application written in functional block
language is less than 50 lines long. When
compiled, however, the generated assembly
listing extends to
30 000 lines !

8. Conclusions

We have tried to show how easy and
efficient the Functional Block Programming
method could be. Teaching RT Signal
processing no longer looks like to a tedious C
programming language exercise !

