
M o t o r o l a ’ s H i g h - P e r f o r m a n c e D S P T e c h n o l o g y

APR5/D
Rev. 1

Motorola
DSP56000/SPS/DSP56001

Implementation
of
PID Controllers
on the

Digital Signal
Processors

MOTOROLA APR5

by
Jay Stokes and Guy R. L. Sohie
Digital Signal Processor Operation

Motorola
Digital Signal
Processors

Implementation of PID
Controllers on the Motorola
DSP56000/DSP56001

Table
of Contents

Section 1
MOTOROLA
Introduction 1-1
Section 2
 Classical Analog Controls 2-1
 Section 3

Controllers

3.1 Increasing the Gain to Reduce

the Rise Time 3-2
3.2 Adding a Derivative Term to

Reduce Overshoot 3-4
3.3 Adding an Integral Term to

Eliminate Steady-State Error 3-7
Section 4
 Notch Filters 4-1
Section 5
 Control in the Digital Domain 5-1
Section 6

Implementation of
Digital Controllers

and Filters
6.1 The Magnitudes of ai(1) and
ai(2) are Less Than Unity 6-5

6.2 Initialization 6-8
6.3 PID Compensation Algorithm 6-10
6.4 The Magnitude of ai(1) is

Greater Than Unity 6-11
6.5 All bi(0) Coefficients are 1;

bi(1), bi(2),ai(1), and ai(2)
Coefficients are Fractional 6-14

6.6 Computational Delay 6-15
 iii

Table
of Contents

Section 7

Finite-Length
Register Effects
iv
7.1 Coefficient Quantization 7-1
7.2 Overflow 7-5
7.3 Roundoff Noise 7-9
7.4 Implementation of the Gain, g 7-13
Section 8

System
Considerations
8.1 Host Interface Port 8-2
8.2 SCI Port 8-5
8.3 SSI Port 8-8
8.4 General-Purpose I/O Pins 8-9
8.5 External Interrupts 8-11
8.6 Generating Pulse-Width Modulated

Outputs Using the SCI Timer 8-14
8.7 Generating Three-Phase Outputs

Using Modulo Addressing 8-16
Section 9

APPENDIX A

REFERENCES
Conclusion 9-1

Listing of ‘declare.dat’ A-1

References-1
 MOTOROLA

Illustrations

APR5 LOF Page v Friday, December 15, 1995 11:17 AM
Figure 2-1

Figure 2-2

Figure 2-3

Figure 3-1

Figure 3-2

Figure 3-3

Figure 4-1

Figure 6-1

Figure 6-2
MOTOROLA
General Analog Control System 2-2

Transient Response of a Second-Order
System for Various Pole Locations
in the s-Plane 2-3

Typical Step-Response Characteristics
Include Rise Time (tr), Settling Time (ts),
Percent Overshoot, and
Steady-State Error (ess) 2-4

General Feedback Control System with
Compensation 3-2

Step Response of a Closed-Loop Feedback
System Shown for a (a) P Controller,
(b) PD Controller, and (c) PID Controller 3-3

Output, c(t), Error, e(t), and the Derivative of
the Error, de(t)/dt, Versus Time 3-5

Frequency Response 4-2

Cascade and Parallel Implementations of
Digital Filters and Controllers 6-2

Biquad Sections 6-3
v

Illustrations

APR5 LOF Page vi Friday, December 15, 1995 11:17 AM
Figure 6-3

Figure 6-4

Figure 6-5

Figure 6-6

Figure 6-7

Figure 6-8

Figure 6-9

Figure 6-10

Figure 7-1
vi
Sixth-Order Controller Implemented in
Cascaded Direct Form I Biquad Sections 6-4

Figure 6-3 Sixth-Order Controller
Transformed into Cascaded Direct
Form II Sections with an All-Zero
Section and an All-Pole Section 6-4

DSP56000/DSP56001 Assembly Language
Program that Implements a Sixth-Order
PID Controller 6-7

Memory Map for the Sixth-Order
PID Controller 6-9

Stability Triangle that Illustrates the Stability
Requirements for a Second-Order System 6-13

Code Kernel that Implements the Modified
Direct Form II Biquad Section Shown
in Figure 6-9 6-13

Modified Direct Form II Biquad Section 6-14

Code Kernel that Implements the Most Efficient
Biquad Section Possible on a
DSP56000/DSP56001 6-14

Location of the Quantized Poles for a
3-Bit Word Length 7-4
 MOTOROLA

Illustrations

APR5 LOF Page vii Friday, December 15, 1995 11:17 AM
Figure 7-2

Figure 7-3

Figure 8-1

Figure 8-2

Figure 8-3

Figure 8-4

Figure 8-5

Figure 8-6

Figure 8-7

Figure 8-8
MOTOROLA
Roundoff Noise Sources for Direct Form
Implementations 7-11

Output Noise Power for a Direct Form I
Biquad Section Caused by Internal
Roundoff Noise 7-12

DSP56000/DSP56001 Functional
Signal Groups 8-1

Connecting the DSP56000/DSP56001 to
the MC68000 via the Host Port 8-2

Connecting the DSP56000/DSP56001 to
the MC68HC11 Via the Host Port 8-3

DSP56000/DSP56001 Fast Interrupt Vectors 8-4

Program Language that Alters PID Coefficients in
Real Time without Recompiling the Routine
or Halting the DSP56000/DSP56001 8-7

Functional Diagram of SCI Programmable Timer 8-8

Connecting the DSP56000/DSP56001 to the
MC68HC99 Disk Drive Controller via
the Port B I/O Lines 8-10

Using External Interrupts to Provide
Velocity-Feedback Information 8-12
vii

viii

Illustrations

APR5 LOF Page viii Friday, December 15, 1995 11:17 AM
Measuring the Disk Drive Spindle Velocity Using
IRQA and the SCI Timer 8-13

Generating Three PWM Signals on the General
Purpose I/O pins Using the SCI Timer and
Modulo Addressing 8-15

Outputs Generated from the PWM Example 8-16

Generating Three-Phase Output Using
Modulo Addressing 8-17

Generating Three-Phase Signals for Motor Control
Using the SCI Timer and Sine Wave Table 8-18

Location of the Peripheral Registers A-1

Location of the Fast Interrupt Service Routines A-2
Figure 8-9

Figure 8-10

Figure 8-11

Figure 8-12

Figure 8-13

Figure A-1

Figure A-2
 MOTOROLA

MOTOROLA

SECTION 1

Introduction

“The DSP56000/
DSP56001
offers the

control designer
the advantages

of digital
electronics in a

low-cost
package with the

processing
power to handle

sampling rates
up to a

megahertz for
simple

algorithms.”

APR5Section1 Page 1 Friday, December 15, 1995 11:18 AM
The purpose of this application note is to show how
the Motorola DSP56000/DSP56001 digital signal
processor (DSP) may be used to solve real-time dig-
ital control problems. This application note will
concentrate on implementing some general control
algorithms including proportional-integral-derivative
(PID) controllers and notch filters.

In the past, many real-time control systems have
been restricted to analog electronics; however, ana-
log components have several problems. Device
parameters are dependent upon age, temperature,
power supply voltages, and manufacturing lot. In ad-
dition, analog filters and controllers exhibit low noise
immunity, require periodic tuning, and offer little flexi-
bility when altering coefficients.

These problems can be solved by implementing the
control structure using a microprocessor, microcon-
troller, or DSP. Digital controllers and filters are not
dependent upon age or environmental factors, and
software can be easily modified. In addition, when us-
ing a fast microprocessor, microcontroller, or DSP,
many difficult control structures can be implemented
in software without additional hardware. Another ben-
efit of digital control is high noise immunity.Once the
1-1

1-2

APR5Section1 Page 2 Friday, December 15, 1995 11:18 AM
observed variables are digitized, virtually no addi-
tional external noise can be added to the system.
Digital control algorithms tend to be more precise
than their analog counterparts.

In the past, designers used analog electronics to
implement real-time control systems because mi-
crocontrollers were simply too slow to handle
sampling rates of more than a few kilohertz. Other
solutions built around powerful microprocessors
were too expensive to be practical. The DSP56000/
DSP56001 offers the control designer the advan-
tages of digital electronics in a low-cost package
with the processing power to handle sampling rates
up to a megahertz for simple algorithms.

The DSP56000/DSP56001 is both a high-speed mi-
crocontroller and a powerful DSP. The DSP56001
has 512 24-bit words of program RAM, which can
be downloaded upon reset from a single 2K x 8
EPROM or a host processor. For high-volume prod-
ucts, the DSP56000 offers 3.75K 24-bit words of
program ROM, which can be factory programmed
for a stand-alone system. Except for the program
memory, the DSP56000and DSP56001 are identi-
cal. The DSP56000/DSP56001 includes two
separate memory spaces for data, which can be si-
multaneously accessed during a single instruction
cycle. Another feature of the DSP56000/DSP56001
is a hardware multiply/accumulator for implement-
ing computationally intensive real-time control
algorithms. The DSP56000/DSP56001 can multiply
MOTOROLA

APR5Section1 Page 3 Friday, December 15, 1995 11:18 AM
two 24-bit numbers, add the 48-bit result to a 56-bit
accumulator, and access both memories in one in-
struction cycle. For fast input/output (I/O) operations,
the DSP56000/DSP56001includes three on-chip pe-
ripherals; the host interface (HI), the synchronous
serial interface (SSI), and the serial communications
interface (SCI). When the SCI is not being used for
communication purposes, its baud rate generator
functions as a general-purpose timer. Depending on
how these peripherals are configured, the DSP56000/
DSP56001 has up to 24 general-purpose I/O lines
available. All these features allow the DSP56000/
DSP56001 to be used in many computationally inten-
sive real-time control applications including: disk
drives, engine control, computer-controlled suspen-
sion, active noise cancellation, and robotics.

Some basic analog control concepts and PID con-
trollers are discussed in SECTION 2 Classical
Analog Controls. Specifically, this section studies
the effects of varying the controller gain and adding
derivative and integral terms in a closed-loop feed-
back system. A general transfer function is derived
in the Laplace domain for a continuous-time PID
controller. Notch filters are often used in control
systems to eliminate the effects of mechanical res-
onances.The general transfer function for many
types of filters, including notch filters, is shown to be
equivalent to the transfer function of PID control-
lers. After transforming this analog transfer function
into the digital domain, several implementation is-
sues are considered with respect to the DSP56000/
DSP56001. Finite-length register effects, including
MOTOROLA 1-3

1-4

APR5Section1 Page 4 Friday, December 15, 1995 11:18 AM
coefficient quantization, overflow, and roundoff
noise of 16- and 24-bit implementations, are then
calculated. Finally, system issues concerning how
the DSP56000/DSP56001 would fit into a embed-
ded control system are studied. Examples of
generating pulse-width modulated (PWM) outputs
and three-phase outputs are given. Also, a simple
scheme for measuring velocity is presented. ■
MOTOROLA

MOTOROLA

Classical Analog
Controls

SECTION 2

“For the system
to be stable, the

poles of the
closed-loop

transfer function
must lie in the

left half of the s-
plane.”

APR5Section2 Page 1 Friday, December 15, 1995 11:19 AM
A block diagram of a general analog control system
in the Laplace domain is shown in Figure 2-1. The for-
ward transmission path transfer function is given by
G(s); H(s) represents the feedback path transfer func-
tion. Typically, the feedback element contains a
sensor or transducer that measures a physical pa-
rameter, such as velocity or temperature, and
converts this measurement into a voltage. Therefore,
H(s) represents the gain of the transducer.

The basic idea in many control problems is to make
the controlled output, c(t), follow the reference input,
r(t), in the frequency range of interest. Therefore, the
desired transfer function is:

Eqn. 2-1

where: R(s) and C(s) are the Laplace transforms of
r(t) and c(t), respectively

If r(t) varies with time, the problem is commonly re-
ferred to as the tracking problem; otherwise, if the
input remains constant, it is called a regulator prob-
lem. Figure 2-1 represents a closed-loop feedback
system since the controlled variable is measured and
used to control the system. If C(s) is not measured,

T s() C s()
R s()
------------ 1= =
2-1

2-2

T s() C s()
R s()
------------= =

R(s)

r(t)

+

–

Figure 2-1 General

APR5Section2 Page 2 Friday, December 15, 1995 11:19 AM
H(s)=0, and the system is open-loop. The problem
of making c(t) follow r(t) is usually compounded by
disturbances in the forward transmission path and
the feedback path. Neglecting any disturbances in
the system, the error between the input and the out-
put of the system is given by E(s)=R(s)-H(s)C(s).
However, C(s)=G(s)E(s). Solving these two equa-
tions, the closed-loop transfer function is found to
be:

Eqn. 2-2

The poles of the closed-loop transfer function are
found by solving the characteristic equation:

Eqn. 2-3

G s()
1 G s()H s()+

s z1–()… s z– m()

s p– 1()… s p– n()
--m n<=

E(s)

e(t)
G(s)

H(s)

C(s)

c(t)

Analog Control System

1 G s()H s()+ 0=
MOTOROLA

tem for Various Pole

S

σ

APR5Section2 Page 3 Friday, December 15, 1995 11:19 AM
Figure 2-2 shows how the location of the poles of a
second-order closed-loop transfer function affects
the output. For the system to be stable, the poles of
the closed-loop transfer function must lie in the left
half of the s-plane. In an unstable system with a
bounded input, the output becomes unbounded as a
result of the poles lying in the right half of the s-plane.

The specifications for a control problem are often
given in the time domain as opposed to the frequen-
cy domain. These specifications usually include a

Figure 2-2 Transient Response of a Second-Order Sys
Locations in the s-Plane

ω

MOTOROLA 2-3

2-4

Mp

c(t)

1

0.9

0.1
tr

Figure 2-3 Typical St
Settling Ti

APR5Section2 Page 4 Friday, December 15, 1995 11:19 AM
certain transient response and steady-state error
for a specific input such as a step or ramp function.
The transient response specifications for a step in-
put are shown in Figure 2-3 and include the rise
time (tr), percent overshoot, and settling time (ts).
The rise time is defined as the time for the output to
rise from 10% to 90% of the step input. The settling
time is the time required for the output to settle with-
in a given percentage of the input step function. A
typical number for this percentage is 5%. The
steady-state specification in the time domain for a
step input is also shown in Figure 2-3. The final de-
viation from the desired step input as t ➨ ∞ is called
the steady-state error (ess) or offset. To improve the
step response, the rise time, percent overshoot,
and steady-state error should all be minimized. ■

ts

Percent Overshoot =
Mp 1–

100

t

ess

ep-Response Characteristics Include Rise Time (tr),
me (ts), Percent Overshoot, and Steady-State Error (ess)
MOTOROLA

MOTOROLA

“By increasing
the gain of the P

controller, the
rise time of the
system can be

decreased,
allowing the

output to follow
the input faster.”

SECTION 3

Controllers

One way to improve the step response of a control
system is to add a controller to the feedback control
system in Figure 2-1. The block diagram of a control
system, including a controller, Gc(s), is found in Fig-
ure 3-1. In this figure, the controller has been added
to the forward transmission path although it could
have been placed in the feedback path. The error sig-
nal from the summing junction, E(s), is the input to the
controller, and U(s) is the output of the controller as
well as the input to the plant. For this system with uni-
ty feedback gain, H(s)=1, and the transfer function is:

Eqn. 3-1

where: Gc(s) = the transfer function of the controller
Gp(s) = the transfer function of the plant to
 be controlled

Again, the purpose of the controller is to make the out-
put of the system follow or track the input such that:

Eqn. 3-2

C s()
R s()

Gc s()Gp s()

1 Gc s()Gp s()+
--=

T s()
Gc s()Gp s()

1 Gc s()Gp s()+
-- 1≈=
3-1

3-2

Figure 3-1 General Fe

+

–

R(s)

r(t)
E

e

3.1 Increasing the Gain to
Reduce the Rise Time

One way to make the output follow the input is to in-
crease the gain of the controller such that
Gc(s)Gp(s)>>1 for frequencies of interest. In this
case, Eqn. 3-1 reduces to:

Eqn. 3-3

A controller consisting of only a large gain is called
a proportional controller (P). Consider what hap-
pens when a P controller is used in Figure 3-1. If c(t)
is less than the r(t), a positive error signal, e(t), re-
sults. After this positive error voltage has been
amplified by the gain of the P controller, the output
of the system is increased to track the input signal.

edback Control System with Compensation

H(s)

Gp(s)Gc(s)
C(s)

c(t)

G(s)

U(s)

u(t)

(s)

(t)

C s()
R s()

Gc s()Gp s()

Gc s()Gp s()
--------------------------------≈ 1=
MOTOROLA

System Shown
c) PID Controller

5 0.3

ess
Likewise, if c(t) is greater than r(t), then a negative
error voltage is applied to the plant, and the output
of the system is reduced. The speed at which the
output can respond to the error signal is dependent
upon the magnitude of the gain of the P controller.
By increasing the gain of the P controller, the rise
time of the system can be decreased, allowing the
output to follow the input faster.

However, a problem is associated with simply in-
creasing the gain of the P controller. The overshoot
of the output is increased as the gain of the P con-
troller is increased, causing a damped oscillatory

Figure 3-2 Step Response of a Closed-Loop Feedback
for a (a) P Controller, (b) PD Controller, and (

0 0.05 0.1 0.15 0.2 0.2

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(c)

(a)

(b)
MOTOROLA 3-3

3-4

output. This type of output is illustrated in the (a)
graph of Figure 3-2. If the gain is increased further,
the system will become critically stable at some
point, and the output will oscillate. When this oc-
curs, the poles of the closed-loop transfer function
(see Eqn. 2-2) lie on the jω–axis in the s-plane (see
Figure 2-2). Increasing the gain past the critically
stable point causes the system to become unstable,
and the output increases without bound. In addition,
a constant gain amplifies the high-frequency noise
in addition to the lower frequency bandwidth of the
control system. This high noise amplification can
greatly distort the lower frequency control signals.

3.2 Adding a Derivative
Term to Reduce
Overshoot

One way to reduce the rise time without increasing
the percent overshoot is to add a derivative term to
the P controller. The transfer function of a propor-
tional-plus-derivative (PD) controller is:

Eqn. 3-4

Figure 3-3 (from Reference 7) shows a typical step
response of a closed-loop system without compen-
sation. The output of the system, c(t), the error
signal, e(t), and the derivative of the error signal,
de(t)/dt, are shown. The de(t)/dt graph represents

Gc s() Kp Kds+=
MOTOROLA

 the Error, de(t)/dt,

t, versus Time

t

t

the slope of the error signal and provides informa-
tion about how the error signal is changing with
respect to time. For a system with zero overshoot,
the derivative of the error signal should not oscillate
about the x-axis (see Figure 3-3(c)) but should ap-
proach the x-axis asymptotically. A derivative term
has been added to the P controller in the (b) graph
of Figure 3-2. As Figure 3-2 illustrates, the rise time
of the PD controller is as fast as the P controller, but
the output does not exhibit any overshoot. By in-
cluding the derivative term in Gc(s), the controller
can estimate future values of the error signal and
can compensate accordingly.

Figure 3-3 Output, c(t), Error, e(t), and the Derivative of
 Versus Time

(a) c(t) versus Time

(b) e(t) versus Time

(c) de(t)/d

c(t)

e(t)

de(t)
dt

t

MOTOROLA 3-5

3-6

In addition to improving the transient response, a
controller is added to a feedback system to de-
crease the steady-state error. If the steady-state
error is constant, the contribution of the derivative
term is zero since the derivative of a constant is ze-
ro. However, if the steady-state error is time-
varying, the derivative term can be used to reduce
this offset. Again, the derivative of the steady-state
error predicts future values of the error and can be
used to reduce ess. The equation for the steady-
state error is given by:

Eqn. 3-5

The error term is dependent upon the input to the
system as well as the system itself (see Figure 3-1).
Depending on the input, many systems with a P or
PD controller will exhibit some steady-state offset. If
the controlled variable ever matches the reference
value exactly, c(t)=r(t), then the error signal, e(t),
equals zero. For a constant zero input to a P or PD
controller, the output of the controller, u(t), also
equals zero. This condition forces the output of the
plant, c(t), to zero. Of course, this deviation of the
output would then change the error signal, and the
controller would again try to readjust the input to the
plant to match r(t). Eventually, the output of the
plant reaches an equilibrium state that is offset from
the desired step input. This offset is called the
steady-state error. In Figure 3-2, the output of a sys-
tem with either a P or PD controller exhibits an
offset of approximately 0.375 for a unit-step input.

ess lime t() limsE s()= =
t → ∞ s → 0
MOTOROLA

Another problem associated with the PD controller
is that it functions as a high-pass filter. Therefore,
the PD controller amplifies high-frequency noise,
which reduces the stability of the overall system.

3.3 Adding an Integral
Term to Eliminate
Steady-State Error

For the controlled output, c(t), to exactly match the
reference input, r(t), the system must have zero
steady-state error. One way to eliminate the ess is
to add an integral term to the P controller. The
transfer function for a PID controller is:

Eqn. 3-6

Adding an integral term gives the controller the abil-
ity to remember the past. For the P or PD controller,
the steady-state error can not be driven to zero
since a zero input to the controller forces a zero in-
put to the plant. The integral term allows the PID
controller to have a nonzero output for a zero input.
This integral term is similar to a capacitor holding a
charge. By remembering the correct input to the
plant, u(t), which corresponds to the matching of
c(t) to r(t), the PID controller is able to constantly
drive the plant, allowing the controlled output to ex-
actly match the reference input. Therefore, the

Gc s() KDs Kp

Ki
s
-----+ +

Kds
2

Kps Ki+ +

s
---= =
MOTOROLA 3-7

3-8

Gc s() β

1
--=
integral term allows zero steady-state error. The ef-
fects of adding an integral term to the P and PD
controllers is shown in graph (c) of Figure 3-2. The
output of the PID reaches unity and has no steady-
state error.

Two problems are introduced by adding the integral
term. Since the integrator adds another pole to the
closed-loop transfer function, the stability of the sys-
tem may be reduced. Also, the integral term acts as
a low-pass filter and tends to reduce the transient re-
sponse of the system. Graph (c) in Figure 3-2 shows
how the transient response of this system is slowed
by the addition of the integral term.

As previously mentioned, the derivative portion of
the PID controller amplifies high-frequency noise.
To solve this problem, two or more poles must be
added at higher frequencies. Additional zeros may
be needed to obtain a specific frequency response
for the controller. Depending on the number of ze-
ros and poles added, the resulting controller has the
generalized transfer function:

Eqn. 3-7

■

0() β 1()s 1– β m()s m–
+ +

α 1()s 1– … α n()s n–
+ + +

--m n<
MOTOROLA

MOTOROLA 4-1

N

otch filters are often added to control systems to
negate the effects of a mechanical resonance at a
specific frequency. Suppose a motor has a frequency
response such as the one illustrated in Figure 4-1(a).
When the motor reaches a speed corresponding to f

r

,
it becomes unstable and begins to vibrate due to the
mechanical resonance. These mechanical vibrations
tend to shorten the life of the motor. By filtering the
output with a notch filter as shown in Figure 4-1(b),
the gain of the resonance can be reduced. The
resultant system's frequency response is shown in
Figure 4-1(c). The transfer function of a notch filter,
G

f

(s), has a form equal to the transfer function of the
controller shown in Eqn. 3-7. Therefore, the
techniques used to implement PID controllers can
also be used to implement notch filters.

■

SECTION 4

Notch Filters

“...the
techniques

used to
implement PID
controllers can
also be used to

implement
notch filters.”

4-2 MOTOROLA

Figure 4-1 Frequency Response

(a) Plant with a Resonance at fr

(b) Notch Filter with the Notch at fr (c) Notch Filter and Plant Combined Response

fr

frfr ff

f

Gp

Gp

Gf

MOTOROLA

“Using an idea
similar to the

bilinear
transform, a

technique
involving a

pseudo-discrete
plane, called the

w-plane...,
allows the

engineer to
design with

classic analog
techniques.”

SECTION 5

Control in the Digital
Domain

Analog control is a well-defined discipline. Many
methods for designing analog controllers in the time
and frequency domains are found in Reference 7.
Some of the more common design techniques in-
clude root locus, Routh-Hurwitz, Nyquist plots, and
Bode diagrams. These design tools try to determine
the location of the poles of the closed-loop transfer
function without directly solving the characteristic
Eqn. 2-3. One way to design digital controllers and fil-
ters is to transform an analog design to the z-domain.
Some of the more common transforms include input
invariance methods and the bilinear transform (see
References 4, 5, 6, 9, and 11). Input invariance meth-
ods sample the output of a continuous-time system
for a given continuous-time input. The types of inputs
typically considered include the impulse, step, and
ramp functions although the impulse response is not
particularly relevant in control applications. A dis-
crete-time system is then calculated, which, when
driven with the discrete-time version of the input,
yields a discrete-time output matching the sampled
output of the continuous-time system. The major
problem with input invariance methods is that alias-
ing occurs due to the sampling process.
5-1

5-2

Another method of transforming an existing analog
design to the z-domain is to use the bilinear trans-
form given by:

Eqn. 5-1

The bilinear transform compresses the entire jω
axis in the s-plane to the frequency range bounded
by , where T represents the sampling
period. Since sampling is not used in this transform,
the output will not exhibit aliasing, but the frequency
response of the system is distorted due to the com-
pression of the jω axis. Using an idea similar to the
bilinear transform, a technique involving a pseudo-
discrete plane, called the w-plane (see References
6 and 10), allows the engineer to design with classic
analog techniques.

An alternative to these analog-based controllers
and filters is to design directly in the z-domain. Dig-
ital-filter theory removes many of the restrictions
imposed in analog-filter theory. However, the de-
sign of digital controllers directly in the z-domain is
not as developed as digital-filter theory. Although
some simple digital design techniques such as
deadbeat control exist, most digital control books
present state feedback methods, which use the
state variable description of the system and are be-
yond the scope of this application note.

s
2
T
--- 1 z

1–
–

1 z
1–

+

 
 
 

=

π/T/2 ω π/T≤ ≤
MOTOROLA

Disregarding state feedback control, a simple PID
controller, deadbeat controller, or digital filter is de-
scribed by the following equation:

Eqn. 5-2

■

Gc z() γ 0() γ 1()z 1– … γ n()z m–
+ + +

1 δ 1()z 1– … δ n()z n–
+ + +

--m n<=
MOTOROLA 5-3

MOTOROLA

Implementation of
Digital Controllers

SECTION 6

“Since the
architecture of
the DSP56000/

DSP56001 allows
efficient

implementation
of digital

controllers and
filters, the

computational
delay

associated with
digital signal

processing is
minimized.”

APR5Section6 Page 1 Friday, December 15, 1995 11:24 AM
The architecture of the DSP56000/DSP56001 allows
discrete-time controllers and filters to be implemented
efficiently and accurately. To reduce roundoff noise
caused by finite-length registers, digital controllers
and filters are often implemented in cascaded or par-
allel first- and second-order sections. Figure 6-1
shows a sixth-order controller implemented in cas-
cade sections and parallel sections. The parallel
structure is useful in multiprocessing schemes but can
be more sensitive to coefficient quantization noise,
which is discussed in 7.1 Coefficient Quantization.
The transfer function for a digital controller implement-
ed in cascaded biquad sections is:

Eqn. 6-1

Implementation of the overall system gain, g, is includ-
ed in SECTION 7.4 Implementation of the Gain, g.
Typically, these second-order sections are implement-
ed using either direct form I or direct form II
realizations as shown in Figure 6-2. For each section,
direct form I requires more memory and more instruc-
tion cycles to implement than direct form II but may be
less sensitive to roundoff noise.

Gc z() g
bi 0() bi 1()z 1–

bi 2()z 2–
+ +

1 ai 1()z 1–
ai 2()z 2–

+ +
--

i 1=

n

∏=
6-1

6-2

b
1

0(
)

b
1

1(
)z

1–
b

1
2(
)z

2–
+

+

1
a

1
1(
)z

1–
a

1
2(
)z

2–
+

+

b
2

0(
)

b
2

1(
)z

1–
b

2
2(
)z

2–
+

+

1
a

2
1(
)z

1–
a

2
2(
)z

2–
+

+

b
3

0(
)

b
3

1(
)z

1–
b

3
2(
)z

2–
+

+

1
a

3
1(
)z

1–
a

3
2(
)z

2–
+

+

x(
k)

y(
k)

(a
)

C
as

ca
d

e

APR5Section6 Page 2 Friday, December 15, 1995 11:24 AM
b
1

0(
)

b
1

1(
)z

1–
b

1
2(
)z

2–
+

+

1
a

1
1(
)z

1–
a

1
2(
)z

2–
+

+

b
2

0(
)

b
2

1(
)z

1–
b

2
2(
)z

2–
+

+

1
a

2
1(
)z

1–
a

2
2(
)z

2–
+

+

b
3

0(
)

b
3

1(
)z

1–
b

3
2(
)z

2–
+

+

1
a

3
1(
)z

1–
a

3
2(
)z

2–
+

+

+

+

+

y(
k)

x(
k)

(b
)

P
ar

al
le

l

F
ig

u
re

 6
-1

C

as
ca

de
 a

nd
 P

ar
al

le
l I

m
pl

em
en

ta
tio

ns
 o

f D
ig

ita
l F

ilt
er

s
an

d
C

on
tr

ol
le

rs
MOTOROLA

y(k)

z-1

z-1

y(k)

APR5Section6 Page 3 Friday, December 15, 1995 11:24 AM
Figure 6-3 shows a sixth-order filter or controller im-
plemented in cascaded direct form I biquad sections.
In practice, the redundant z-1 terms in Figure 6-3 can
be removed. The resulting structure is shown in Fig-
ure 6-4 and is composed of cascaded direct form II
sections with an all-zero section at the beginning and
an all-pole section at the end. Therefore, in the re-
mainder of this application note, only direct form II
implementations will be considered. Depending on
the numerator and denominator coefficients in
Eqn. 6-1, several different implementations of the
second-order direct form II must be considered.

z-1

z-1

b0

b1

b2

-a1

-a2

a0
1–x(k)

b0

b1

b2

-a1

-a2

a0
1–x(k)

z-1

z-1

w(k-1)

w(k-2)

(a) Direct Form I

(b) Direct Form II

Figure 6-2 Biquad Sections
MOTOROLA 6-3

APR5Section6 Page 4 Friday, December 15, 1995 11:24 AM
z-1

x(
k)

D
ire

ct
 F

or
m

 I

y(
k)

D
ire

ct
 F

or
m

 I

z-1

z-1z-1
z-1 z-1

z-1 z-1
z-1z-1

z-1z-1

D
ire

ct
 F

or
m

 I

F
ig

u
re

 6
-3

S

ix
th

-O
rd

er
 C

on
tr

ol
le

r
Im

pl
em

en
te

d
in

 C
as

ca
de

d
D

ire
ct

 F
or

m
 I

B
iq

ua
d

S
ec

tio
ns

y(
k)

z-1z-1
z-1 z-1

z-1 z-1

x(
k)

z-1z-1

A
ll-

Z
er

o
D

ire
ct

 F
or

m
 II

D
ire

ct
 F

or
m

 II
A

ll-
P

ol
e

F
ig

u
re

 6
-4

F

ig
ur

e
6-

3
S

ix
th

-O
rd

er
 C

on
tr

ol
le

r
T

ra
ns

fo
rm

ed
 in

to
 C

as
ca

de
d

D
ire

ct
 F

or
m

 II
 S

ec
tio

ns

w
ith

 a
n

A
ll-

Z
er

o
S

ec
tio

n
an

d
an

 A
ll-

P
ol

e
S

ec
tio

n

6-4 MOTOROLA

0.8 0.64z
1–

0.9z
2–

+ +

1 0.7z
1–

0.5z
2–

+ +
--

 
 
 

APR5Section6 Page 5 Friday, December 15, 1995 11:24 AM
6.1 The Magnitudes of
ai(1) and ai(2) are
Less than Unity

The most general second-order section occurs
when the magnitudes of ai(1) and ai(2) are less than
one and the structure includes a direct path, bi(0).
For a second-order structure to be implemented ef-
ficiently, all of the filter coefficients, ai(k) and bi(k),
must be fractional since the DSP56000/DSP56001
uses a fractional data representation for all arith-
metic logic unit (ALU) operations. If magnitudes of
one or more of the numerator coefficients, bi(k), are
greater than one, then all the numerator coefficients
of the biquad section must be divided by the small-
est power of two, which makes the magnitude of all
of the numerator coefficients less than one. As a re-
sult, this factor of two should be incorporated into an
input scaling factor, other biquad section's numera-
tor coefficients, or the output scaling factor. To
illustrate how a simple PID controller could be im-
plemented in direct form II sections using the
DSP56000/DSP56001, the following transfer func-
tion will be considered:

Eqn. 6-2

Referring to Figure 6-2 (b), the intermediate values to
be calculated and stored are designated as w(k-1)
and w(k-2). Often, w(k-1) and w(k-2) are called the

Gc z() 0.6 0.4z
1–

0.25z
2–

–+

1 0.8z
1–

0.6z
2–

+–

 
 
  0.8 0.6z

1–
0.2z

2–
+ +

1 0.4z
1–

0.3z
2–

+ +
--

 
 
 

=

MOTOROLA 6-5

6-6

w k()

y k() b=

APR5Section6 Page 6 Friday, December 15, 1995 11:24 AM
internal nodes of the structure. The recursive set of
equations describing this structure is:

Eqn. 6-3

Eqn. 6-4

Eqn. 6-5

Eqn. 6-6

In the assembly language in Figure 6-5, parallel A/D
and D/A are assumed to be located in external pe-
ripheral space at locations Y:$FFFE and Y:$FFFF,
respectively. See Reference 3 for explicit details of
the architecture of the DSP56000/DSP56001. The
remainder of the equate definition referenced in
Figure 6-5 is reproduced in APPENDIX A Listing
of 'declare.dat'. Figure 6-6 shows a memory map
for the data and coefficients. The internal nodes
and coefficients for each biquad section are stored
in on-chip X and Y data RAM, respectively. This
type memory map allows data to be continuously
moved on both the X and Y data buses during each
multiply to set up the data ALU registers for the fol-
lowing multiply.

1
a0
------ x k() a 1()– *w k 1–() a 2()*w k 2–()–()=

0()*w k() b 1()*w k 1–() b 2()*w k 2–()++

w k 2–() w k 1–()=

w k 1–() w k()=
MOTOROLA

tions

outine

terrupt

 Program that
(sheet 1 of 2)

APR5Section6 Page 7 Friday, December 15, 1995 11:24 AM
include 'declare.dat'

A_D equ $FFFE ;location of A/D in Y memory
D_A equ $FFFF ;location of D/A in Y memory
numsec equ 3 ;number of cascaded biquad sec

;***
; X memory locations
;***

org x:$0
data dc 0 ;cascade section 1 w(k-2)

dc 0 ;cascade section 1 w(k-1)
dc 0 ;cascade section 2 w(k-2)
dc 0 ;cascade section 2 w(k-1)
dc 0 ;cascade section 3 w(k-2)
dc 0 ;cascade section 3 w(k-1)

;***
; Y memory locations
;***

org Y:$0
coef

dc .6 ;a(2) — cascade section 1
dc -.8 ;a(1) — cascade section 1
dc -.25 ;b(2) — cascade section 1
dc .4 ;b(1) — cascade section 1
dc .6 ;b(0) — cascade section 1
dc .3 ;a(2) — cascade section 2
dc .4 ;a(1) — cascade section 2
dc .2 ;b(2) — cascade section 2
dc .6 ;b(1) — cascade section 2
dc .4 ;b(0) — cascade section 2
dc .5 ;a(2) — cascade section 3
dc .7 ;a(1) — cascade section 3
dc .9 ;b(2) — cascade section 3
dc .64 ;b(1) — cascade section 3
dc .8 ;b(0) — cascade section 3

;***
; Fast Interrupt Service Routines
;***

org p:reset ;Reset service routine
jmp main

org p:irqa ;interrupt request a service r
movep y:A_D,a ;a=x(k)
nop ;unused second word of fast in

Figure 6-5 DSP56000/DSP56001 Assembly Language
Implements a Sixth-Order PID Controller
MOTOROLA 6-7

6-8

;***********************
; Initialization
;***********************

org p:main
move #data,r0
move #5,m0
move #coef,r4
move #14,m4
movep #$007,x:ipr
movep #2,x:bcr
move x:(r0)+,x0
andi #$FC,mr

;***********************
; PID Compensator Algor
;***********************
start

wait

do #numsec,end
mac -x0,y0,a
macr -x1,y0,a
mpy x0,y0,a
mac x1,y0,a
macr x0,y0,a

enddo
movep a,y,:D_
jmp start

Figure 6-5 DSP5600
Implemen

APR5Section6 Page 8 Friday, December 15, 1995 11:24 AM
6.2 Initialization
Upon hardware reset, the DSP56000/DSP56001
begins executing instructions at location 0 in pro-
gram memory in all operating modes except normal
expanded, mode 2. In mode 2, the program execu-
tion begins at location $E000 in program memory.
After reset, the DSP56000/DSP56001 immediately
jumps to the beginning of the main routine. The first
eight instructions are responsible for initializing the
digital controller. In this assembly language pro-

;r0 points to states
;r0 is modulo 6
;r4 points to filter coefficients
;r4 is modulo 15

 ;irqa is negative edge triggered, pr 2
;2 wait states for A/D and D/A

y:(r4)+,y0 ;init data ALU registers
;enable all interrupts

ithm

;wait for input sample

do
x:(r0)-,x1 y:(r4)+,y0 ;A=x(k)-a2*s2
X1,x:(r0)+ y:(r4)+,y0 ;A=x(k)-a2*s2-a1*s1
a,x:(r0) y:(r4)+,y0 ;A=b2*b2
x:(r0)+,x0 y:(r4)+,y0 ;A=b2*b2+b1*s1
x:(r0)+,x0 y:(r4)+,y0 ;A=b2*b2+b1*s1+

; b0(x(k)-a2*s2-a1*s1)

;output result to D/A
;repeat

0/DSP56001 Assembly Language Program that
ts a Sixth-Order PID Controller (sheet 2 of 2)
MOTOROLA

r4

oller

APR5Section6 Page 9 Friday, December 15, 1995 11:24 AM
gram, r0 is initialized to point to the table containing
the internal nodes for the sixth-order controller. This
address register is also modified to be modulo 6 to
make the table of internal nodes function as a circu-
lar buffer. Likewise, r4 is initialized to point to the
beginning of the coefficient table and modified to be
modulo 15. With modulo addressing, no instruction
cycles are wasted reinitializing address pointers.

Next, the interrupt priority register is initialized so
that external hardware interrupt A is edge triggered
with a priority level of two. Also, the bus control reg-
ister is programmed to provide two wait states for

b3(0)

b3(1)

b3(2)

a3(1)

a3(2)

b2(0)

b2(1)

b2(2)

a2(1)

a2(2)

b1(0)

b1(1)

b1(2)

a1(1)

a1(2)0

y

w3(k-1)

w3(k-2)

w2(k-1)

w2(k-2)

w1(k-1)

w1(k-2)

Figure 6-6 Memory Map for the Sixth-Order PID Contr

x
r0 0
MOTOROLA 6-9

6-10

APR5Section6 Page 10 Friday, December 15, 1995 11:24 AM
the A/D and D/A. Since the filter program can be
stored in internal program RAM and only uses internal
data RAM, no external wait states are needed for P,
X, or Y memory spaces. The next instruction fetches
the first section's internal node, w1(k-2), and the first
coefficient, a1(2). The purpose of this instruction is to
initialize the data ALU registers and address pointers
for the filtering operation. Finally, the lower two bits of
the mode register are cleared to unmask all interrupts
with priority levels greater than or equal to zero.

6.3 PID Compensation
Algorithm

In this program, the WAIT instruction is used to syn-
chronize the DSP to the A/D. It is assumed that an
end-of-conversion pulse from a parallel A/D is used
to trigger the DSP's external interrupt, IRQA. With
the WAIT instruction, the digitized data is input from
the A/D using the MOVEP instruction, which is the
first instruction of the IRQB fast interrupt. The ad-
vantage of using the WAIT instruction is that the
DSP56000/DSP56001 goes into a low power-con-
sumption mode until the next sample is ready to be
processed. Also, the interrupt allows synchroniza-
tion between the A/D and the DSP. Note that when
using the WAIT instruction, the first instruction of the
fast interrupt will require at least eight instruction cy-
cles to be executed. Another possible method of
importing and exporting data is to use the SSI for
communicating with serial A/Ds and D/As such as
the DSP56ADC16 (see Reference 2).
MOTOROLA

APR5Section6 Page 11 Friday, December 15, 1995 11:24 AM
A hardware DO loop is used to implement the cas-
caded second-order sections of the controller or
filter. The DO loop, which allows the programmer to
keep the code compact, only requires three instruc-
tion cycles to set up and no additional cycles while
the loop is executing. Due to the parallel architec-
ture of the DSP56000/DSP56001, each biquad
section of this type can be implemented in only five
instruction cycles. Before storing intermediate
nodes to memory, the value is rounded to 24 bits.
This convergent rounding insures that no bias is in-
troduced into the roundoff error in contrast to
truncating the result.

6.4 The Magnitude of ai(1)
is Greater than Unity

To insure controller or filter stability, all complex
poles of the structure must lie inside of the unit cir-
cle in the z-plane. For a second-order section with
the denominator defined to be:

Eqn. 6-7

where: a1 represents the negative sum of the
poles, –(p1+p2)

a2 equals the product of the poles, p1 p2

D z() 1 a1z
1–

a2z
2–

+ + 1 p1z
1–

– 
  1 p2z

1–
– 

 = =
MOTOROLA 6-11

6-12

APR5Section6 Page 12 Friday, December 15, 1995 11:24 AM
If the poles are complex conjugates, p2=p1*. Since
the magnitude of both poles must be less than one,

Eqn. 6-8

and

Eqn. 6-9

Solving Eqn. 6-9 yields the set of conditions:

Eqn. 6-10

Eqn. 6-8 and Eqn. 6-10 define the stability triangle
shown in Figure 6-7. For a second-order system to
be stable, the values of a1 and a2 must lie within the
stability triangle. As Figure 6-7 indicates, the mag-
nitude of a1 can be greater than one and still yield a
stable structure. This case presents a minor prob-
lem regarding implementation since the fractional
arithmetic of the DSP56000/DSP56001 cannot ef-
ficiently support nonfractional coefficients. To
implement a stable network of this type, a two can
be factored out of the denominator.

a2 p1p2 1<=

p1,p2

a1– a
2

1
4a2–±

2
--- 1<=

a1 1 a2+<
MOTOROLA

2

a1

4a2=a2
1

1+a2

 Requirements for

2*s2
2*s2-a1*s1
-a2*s2-a1*s1]

b1*s1
b1*s1+
x(k)-a2*s2-a1*s1)

irect Form II Biquad

APR5Section6 Page 13 Friday, December 15, 1995 11:24 AM
The modified signal-flow graph for this type of
structure is shown in Figure 6-9. The kernel for
implementing this type of biquad section requires
six instruction cycles to execute:

Complex Poles

Real Poles

-1

a2

1

1-1-2

a2=1

a1=-a1=1+a2

Figure 6-7 Stability Triangle that Illustrates the Stability
a Second-Order System

mac -x0,y0,a x:(r0)-,x1 y:(r4)+,y0 ;A=x(k)-a
macr -x1,y0,a x1,x:(r0)+ y:(r4)+,y0 ;A=x(k)-a
asl a ;A=2[x(k)
mpy x0,y0,a a,x:(r0) y:(r4)+,y0 ;A=b2*s2
mac x1,y0,a x:(r0)+,x0 y:(r4)+,y0 ;A=b2*s2+
macr x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ;A=b2*s2+

; 2*b0(

Figure 6-8 Code Kernel that Implements the Modified D
Section Shown in Figure 6-9
MOTOROLA 6-13

6-14

x(k)

Figure 6-9 Modified

mac -x0,y0,a x:(r
macr -x1,y0,a x1,x
mac x0,y0,a a,x:
macr x1,y0,a x:(r

Figure 6-10 Code Ker
 Possible

APR5Section6 Page 14 Friday, December 15, 1995 11:24 AM
6.5 All bi(0) Coefficients
are 1; bi(1), bi(2),ai(1),
and ai(2) Coefficients
are Fractional

The most efficient biquad section that can be imple-
mented on the DSP56000/DSP56001 occurs when
bi(0) is equal to one and ai(1), ai(2), bi(1), and bi(2)
are fractional. The DSP56000/DSP56001 kernel for
this type structure requires only four instruction cy-
cles to execute:

y(k)b0

b1

b2

z-1

z-1

a– 2
2

a– 1
2

2

Direct Form II Biquad Section

0)-,x1 y:(r4)+,y0 ;A=x(k)-a2*s2
:(r0)+ y:(r4)+,y0 ;A=x(k)-a2*s2-a1*-s1
(r0)+ y:(r4)+,y0 ;A=x(k)-a2*s2-a1*-s1+b2*s2
0)+,x0 y:(r4)+,y0 ;A=x(k)-a2*s2-a1*s1+

; b2*s2+b1*s1

nel that Implements the Most Efficient Biquad Section
on a DSP56000/DSP56001
MOTOROLA

APR5Section6 Page 15 Friday, December 15, 1995 11:24 AM
6.6 Computational Delay
The time required by the microprocessor to imple-
ment a digital controller or filter is called the
computational delay. Typically, a digital controller is
designed under the assumption that input and out-
put sampling occur simultaneously without regard
to the computational delay. The delay required for
processing adds negative phase and may reduce
the stability of the system. If the computational de-
lay is significant, the controller must be designed to
compensate for the additional negative phase.
Since the architecture of the DSP56000/DSP56001
allows efficient implementation of digital controllers
and filters, the computational delay associated with
digital signal processing is minimized. ■
MOTOROLA 6-15

MOTOROLA

SECTION 7

Finite-Length
Register Effects

“Therefore,
the 24-bit

DSP56000/
DSP56001

may be the
only DSP

capable of
implementing
highly precise

algorithms.”

APR5Section7 Page 1 Friday, December 15, 1995 11:25 AM
Digital filters and controllers are typically designed
and simulated in high-level computer languages using
double-precision floating-point arithmetic. However,
once the double-precision coefficients have been de-
rived, a fixed-point simulation of the structure with
finite-length registers must also be performed to deter-
mine if the filter still meets the design specifications. A
fixed-point design includes three sources of error that
are negligible in the double-precision floating-point de-
sign: coefficient quantization, overflow, and roundoff
noise.

7.1 Coefficient Quantization
The first error source to be studied is coefficient
quantization. Coefficient quantization occurs be-
cause, due to the limited word length of the data in a
fixed-point processor, the 48-bit double-precision fil-
ter coefficients cannot be accurately represented. A
summary of Jackson's explanation (see Reference 5)
of the problems associated with coefficient quantiza-
tion follows.
7-1

7-2

APR5Section7 Page 2 Friday, December 15, 1995 11:25 AM
Factoring the denominator of the second-order bi-
quad section:

Eqn. 7-1

yields the pole, p, and its conjugate, p*. From this
equation, it is apparent that:

Eqn. 7-2

and

Eqn. 7-3

Quantization of a1 corresponds to the quantization
of the real part of the two poles. A 3-bit quantization
of the real portion of the poles is illustrated by the
vertical lines in Figure 7-1. On the other hand, a2
represents the equation of a circle centered at the
origin with radius p. The quantization of a2 is repre-
sented by the various circles in Figure 7-1. Possible
fixed-point pole locations for 3-bit word length are
given by the intersection of the vertical lines and the
concentric circles. Due to the spare spacing of pos-
sible pole locations near the points z = ±1, large
quantization errors can be introduced in both nar-
row-band low-pass filters and phase-lag controllers
requiring poles in these areas. The result of this
quantization error is that it may not be possible to
obtain the required response from these types of
numerically sensitive structures. In fact, quantized
poles may even lie outside of the unit circle, making
the controller or filter unstable. Since the
DSP56000/DSP56001 is the only 24-bit fixed-point

1 a1z
1–

a2z
2–

+ + 1 p– z
1–

+() 1 p*z
1–

–()=

a1 2Re p()–=

a2 p
2

=

MOTOROLA

b2 2()z 2–
+

a2 2()z 2–

4–

APR5Section7 Page 3 Friday, December 15, 1995 11:25 AM
DSP on the market, it will be much less sensitive to
quantization effects than 16-bit devices.

A study of the quantization effects of the biquad-
section zeros indicates an important point concern-
ing the robustness of parallel implementations. In
the parallel implementation shown in Figure 6-1, the
location of all zeros of the overall transfer function
are dependent upon all individual numerator and
denominator coefficients, ai, and bi.This dependen-
cy can be easily seen by considering a simple
fourth-order parallel system with the following trans-
fer function:

Eqn. 7-4

Finding a common denominator yields:

Eqn. 7-5

Gc z()
b1 0() b1 1()z 1– b1 2()z 2–

+ +

1 a1 1()z 1– a1 2()z 2–
+ +

--
b2 0() b2 1()z 1–

+

1 a2 1()z 1–
+ +

---+=

Gc z() b′ 0() b′ 1()z 1–
b′ 2()z 2–

b′ 3()z 3–
b′

+ + + + 4()z

1 a′ 1()z 1–
a′ 2()z 2–

a′ 3()z 3–
a′ 4()z 4–

+ + + +
---=
MOTOROLA 7-3

7-4

b ′ 1() b=

b ′ 2() b1 2() b1 1()a+=

b ′ 3() b1 2()a=

b

a

a

Figure 7-1 Location o

-1.0

APR5Section7 Page 4 Friday, December 15, 1995 11:25 AM
where:

b ′ 0() b1 0() b2 0()+=

1 1() b1 0()a2 1() b2 1() b2 0()a1 1()+ + +

2 1() b1 0()a2 2() b2+ 2() b2 1()a1 1() b2 0()a1 2()+ + +

2 1() b1 1()a2 2() b2 2()a1 1() b2 1()a1 2()+ + +

′ 4() b1 2()a2 2() b2 2()a1 2()+=

a ′ 1() a1 1() a2 1()+=

′ 2() a1 2() a1 1()a2 1()a2 2()+=

′ 3() a1 2()a2 1() a1 1()a2 2()+=

a ′ 4() a1 2()a2 2()=

f the Quantized Poles for a 3-Bit Word Length

-1.0

1.0

1.0

Region of Large
Quantization Error
MOTOROLA

APR5Section7 Page 5 Friday, December 15, 1995 11:25 AM
This dependency makes the zeros of the parallel
implementation highly sensitive to coefficient quan-
tization. Since the stop-band attenuation is
increased by moving the zeros closer to the unit cir-
cle, filters and controllers with strict specifications
should not be implemented using the parallel form.
On the other hand, the zeros of the cascaded bi-
quad section are only dependent upon b1 and b2,
making this form much less sensitive to coefficient
quantization.

7.2 Overflow
In SECTION 6 Implementation of Digital Control-
lers and Filters, the equations for the stability
triangle were derived, which guarantee stable bi-
quad structures. When implementing these
structures in a fixed-point processor such as the
DSP56000/DSP56001, even these stable struc-
tures may become unstable due to overflow. In
classic microprocessor architectures, overflow oc-
curs when the magnitude of an internal node
becomes greater than unity and cannot be accu-
rately stored in memory. For example, in Eqn. 6-3,
w(k)=1/a0(x(k)-a1 w(k-1)-a2w(k-2)). If |w(k)| >1,
then the subsequent outputs of the filter will be
wrong once w(k) is moved to w(k-1), since |w(k-1)|
must be less than unity. Roberts and Mullis present
an excellent analysis of overflow in second-order
structures (see Reference 11). From an architectur-
al standpoint, overflow could be handled in two
ways. First, if overflow is simply ignored and wrap-
MOTOROLA 7-5

7-6

APR5Section7 Page 6 Friday, December 15, 1995 11:25 AM
around is allowed to occur, then a large positive
(negative) value is moved to memory as a large
negative (positive) value. This condition, which
causes the output to oscillate nonlinearly between
large positive and negative numbers, is referred to
as overflow oscillation or limit cycles. Roberts and
Mullis note that, even for systems with zero input,
the output will never converge to zero for various
initial values of the internal nodes. Hence, once a fil-
ter begins to exhibit overflow oscillations, it may be
impossible for the structure to recover. This type of
instability is disastrous in digital filters and control-
lers and must be avoided.

The second way of handling overflow is to use sat-
uration arithmetic. This method involves limiting a
number, which is to be stored to memory or output
to a D/A, to the maximum positive or negative value
represented by the memory or D/A. Even though
saturation arithmetic is more costly than the first
method, the designers of the DSP56000/
DSP56001 chose to implement it to eliminate the
large nonlinear errors caused by overflow oscilla-
tions. To provide a temporary buffer to protect
against overflow, the DSP56000/DSP56001 has 8-bit
extension registers in both accumulators to handle in-
termediate sums within the range -256 ≤ sum < 256.
If an accumulator with a sum between 1 ≤ sum < 256
is moved to memory, the output is limited to the max-
imum positive value of 1-2-23. Likewise, if an
accumulator has a value between -256 ≤ sum < -1,
the output is limited to the maximum negative value of
-1. The “sticky” status bit L indicates whether limiting
MOTOROLA

APR5Section7 Page 7 Friday, December 15, 1995 11:25 AM
has occurred at any time during the execution of an
algorithm. With saturation arithmetic, the effects of
an overflow are much less severe than if the over-
flow portion of the sum were truncated.

Two methods of avoiding overflow are available:
the input can be scaled, or the structure can be re-
designed. Oppenheim and Schafer (see Reference
9) derive a bound for scaling the input to the struc-
ture. The value of the jth internal node at time k can
be described by:

Eqn. 7-6

where: x is the input to the filter or controller
hj is the unit pulse response from the

input to the jth internal node
yj is the value output of the jth node

Considering only the magnitudes of the values in
Eqn. 7-6,

Eqn. 7-7

Overflow will occur if the magnitude of yj(k) exceeds
unity. Therefore, to obtain |yj(k)| < 1 and avoid over-
flow, xmax needs to satisfy:

Eqn. 7-8

yj k() hj
l ∞–=

∞

∑ l()x k 1–()=

yj k() x k() hj l()
l ∞–=

∞

∑≤

xmax
1

hj l()
l ∞–=

∞

∑
----------------------------<
MOTOROLA 7-7

7-8

APR5Section7 Page 8 Friday, December 15, 1995 11:25 AM
for all of the internal nodes. The bound derived in
Eqn. 7-8 is very conservative since it assumes that
the input to the system is constant at the maximum
possible value. Since this type of input rarely oc-
curs, other assumptions can be made about the
input, including classifying it as sinusoidal, finite en-
ergy, wide sense stationary, or white noise to make
the scaling bound less severe. For additional infor-
mation concerning these bounds, see References
5, 9, 10, and 11.

Scaling of the input data simply describes where
the input data is placed in the data word of the DSP.
For serial A/Ds, scaling the input equates to shifting
the data left (scaling up) or right (scaling down);
whereas, for parallel A/Ds, scaling is dependent
upon how the data lines of the A/D are connected to
the data lines of the DSP. Historically, due to the
overwhelming system cost associated with high-
resolution A/Ds, system designers where restricted
to using low-precision A/Ds for many high-volume
products. However, the recent release of the new
sigma-delta A/Ds, such as the DSP56ADC16,
makes 16-bit input data quite inexpensive. For a
DSP with 16-bit word length, the scaling of the data
corresponds to the loss of the lower significant bits
depending on the scale factor. On the other hand,
the 16 bits of data from an A/D could be shifted
down to the lower 16 bits of the 24-bit data word of
the DSP56000/DSP56001. This shift would cause
no loss in input-data accuracy and would provide
room for eight bits of algorithm growth without the
possibility of overflow or limiting.
MOTOROLA

APR5Section7 Page 9 Friday, December 15, 1995 11:25 AM
The second method of eliminating overflow or limit-
ing is by redesigning the filter or controller. The
transfer function shown in Eqn. 5-2 describes only
the relationship between the input and the output of
the network. An infinite number of different imple-
mentations will yield the same transfer function.
Roberts and Mullis (see Reference 11) show how to
represent these different structures with state vari-
able descriptions (SVDs). An SVD not only gives
the I/O relationship, but also describes the exact in-
ternal structure of the filter or controller. Roberts
and Mullis give a method for translating a structure
having the potential to overflow or limit to a different
structure with the same transfer function which will
not overflow or limit. The method given for translat-
ing one SVD to another SVD is based on a series of
orthogonal matrix transformations. For additional
information on the SVD of filters and controllers,
see Reference 5.

7.3 Roundoff Noise
The third type of noise inherent in the implementa-
tion of digital filters and controllers is roundoff noise.
When multiplying two n-bit numbers together, a 2n-
bit result is produced. If this 2n-bit number is then
multiplied by another n-bit number, the result is 3n
bits in length. If this pattern continues, infinite-
length registers and multipliers are needed. Since
this solution is not practical, the DSP56000/
DSP56001 convergently rounds all 48-bit multipli-
cation results to 24 bits before storing to memory.
MOTOROLA 7-9

7-10

σf
2 2

2B–

12
------------- 1

2π
----=

APR5Section7 Page 10 Friday, December 15, 1995 11:25 AM
This final rounding creates an added source of
noise within the biquad section coincident with ev-
ery move to memory. Oppenheim and Schafer (see
Reference 9) derive the following expression for the
roundoff noise power at the output:

Eqn. 7-9

where: is the Cauchy integral

H(z) is the transfer function

h(n) is the impulse response function
from the noise source to the output

B represents the number of bits in
the word length

The location of the roundoff noise source for direct
form I is shown in Figure 7-2(a). The noise is added
when the 48-bit result is rounded to 24 bits for stor-
age in the internal nodes on the right side of the
signal-flow graph. The roundoff noise for direct form
I only depends upon the location of the poles of the
second-order system. Therefore, a closed-form solu-
tion of the roundoff noise power can be derived for
direct form I. In Reference 9, the roundoff noise pow-
er for a direct form I biquad section is shown to be:

Eqn. 7-10

where: r and θ correspond to the radius and
angle of the complex pole pair,
respectively.

j
---- z∫° 1 H z()H z

1–()z 1–
dz

2
2B–

12
------------- h n[] 2

n ∞–=

∞

∑==

i∫°

σf
2 2

2B–

12
------------- 1 r

2
+

1 r
2

–

 
 
  1

r
4

2r
2

2θ 1+cos–
--=
MOTOROLA

y(k)

z-1

z-1

y(k)

lementations

APR5Section7 Page 11 Friday, December 15, 1995 11:25 AM
Figure 7-3 shows a three-dimensional graph of
Eqn. 7-10 in the z-plane. The figure is constructed
to show the relative magnitudes of the singularities.
In reality, as the poles approach the unit circle, the
output noise power due to roundoff approaches in-
finity. The figure shows that the output noise power
due to roundoff approaches infinity much faster at
the z=1 points because of double singularity. This
makes the direct form I structures very sensitive to
roundoff noise for phase-lag controllers and nar-
row-band low-pass and high-pass filters having
poles near the z=1 point.

z-1

z-1

b0

b1

b2

-a1

-a2

a0
1–x(k)

b0

b1

b2

-a1

-a2

a0
1–x(k)

z-1

z-1

(a) Direct Form I

(b) Direct Form II

e2e1

e1

Figure 7-2 Roundoff Noise Sources for Direct Form Imp
MOTOROLA 7-11

7-12

Figure 7-3 Output No
Internal Ro

APR5Section7 Page 12 Friday, December 15, 1995 11:25 AM
Direct form II has two sources of roundoff noise,
which are shown in Figure 7-2(b). Since the first
noise source is fed back through the poles as well as
fed forward through the zeros, the roundoff noise de-
pends upon the location of both the zeros and the
poles. Therefore, no direct comparison can be made
between direct forms I and II for the general case. For
both direct forms I and II, the word length of the pro-
cessor is important in determining the structure's
output noise power due to roundoff. In fact, Eqn. 7-9
indicates that the roundoff noise power for the 24-bit
DSP56000/DSP56001 is 65,536 times less than that
for a 16-bit DSP.

ise Power for a Direct Form I Biquad Section Caused by
undoff Noise
MOTOROLA

APR5Section7 Page 13 Friday, December 15, 1995 11:25 AM
Therefore, the 24-bit DSP56000/DSP56001 may be
the only DSP capable of implementing highly pre-
cise algorithms.

As previously mentioned, the method presented by
Roberts and Mullis (see Reference 11) to eliminate
overflow can also be used to reduce roundoff noise.
By using a set of orthogonal transformations, a new
second-order structure can be found, which pos-
sesses the minimum roundoff noise of all possible
SVDs for a given transfer function.

7.4 Implementation of the
Gain, g

After an analog controller or filter is transformed into
the digital domain, Eqn. 6-1 contains a constant
gain factor, g. Oppenheim and Schafer (see Refer-
ence 9) consider the effect of implementing this
gain factor in a cascaded biquad network. The gain
factor can be included in the input scaling stage, the
numerator coefficients of one or more of the biquad
sections, or the output scaling stage. The imple-
mentation of this gain factor is dependent upon how
it affects the roundoff noise versus the possibility of
overflow. Rules are also given for the ordering of
the zero and pole pairs based on the effect of
roundoff noise in a cascaded structure. ■
MOTOROLA 7-13

MOTOROLA

“An alternative to
using the HI, SSI,

and SCI is to
configure the

ports as general-
purpose I/O pins.”

Figure 8-1 DSP560

Addr

D

Co

Interrupt And
Mode Control

Port A

Clo

SECTION 8

System Considerations

APR5Section8 Page 1 Friday, December 15, 1995 11:27 AM
An illustration of the DSP56000/DSP56001 func-
tional signal groups is shown in Figure 8-1. These
different groups allow the DSP56000/DSP56001 to
function well in a digital control system. Three on-chip
peripherals are provided: an 8-bit parallel host MPU/
DMA interface, an SCI, and an SSI. Also, depending
on which of the on-chip peripherals are used, up to 24
general-purpose I/O pins are available.

00/DSP56001 Functional Signal Groups

PB0-PB7

PB8
PB9

PB10
PB11
PB12
PB13
PB14

PC0
PC1
PC2

PC3
PC4
PC5
PC6
PC7
PC8

HA0
HA1
HA2
HR/W
HEN
HREQ
HACK

RXD
TXD
SCLK

SC0
SC1
SC2
SCK
SRD
STD

Host Control
or Port B I/O

Vss

8

7

Vcc
5

D
S

P
56

00
0

16

24

ess Bus
A0-A15

ata Bus
D0-D23

PS
DS
RD
WR
X/Y

BR/WT
BG/BS

Bus
ntrol

MODA/IRQA
MODB/IRQB

RESET

XTAL
EXTAL

ck

SCI Serial
or Port C I/O

SSI Serial
or Port C I/O

Host Data Bus
H0-H7 or

Port B I/0
8-1

8-2

MC68000

IPL2-IPL0

A23-A4

FC2-FC0
LDS

AS

DTACK

BERR

R/W

A3-A1

D7-D0

Figure 8-2 Connecting
via the Hos

• MC68000—Use MOVEP
• MC68020 or MC69030—

APR5Section8 Page 2 Friday, December 15, 1995 11:27 AM
8.1 Host Interface Port
The HI is a dedicated 8-bit parallel port used to con-
nect the DSP56000/DSP56001 to a host
microprocessor or DMA controller. Figure 8-2 and
Figure 8-3 show examples of using the HI to connect
the DSP56000/DSP56001 to an MC68000 and
MC68HC11, respectively. The host processor might
be responsible for high-level tasks such as monitor-
ing front-panel switches and initializing various
control sequences in the DSP. One nice feature of

Address
Decode

HREQ

HEN

HACK

HR/W

DTACK

Interrupt
Vector
Decode

Timing
Generator

HA2-HA0

H7-H0

Interrupt
Encoder

DSP56000/DSP56001

 the DSP56000/DSP56001 to the MC68000
t Port

 for multiple byte transfers
Any memory reference will work due to dynamic Bus sizing
MOTOROLA

HACK

HREQ

HR/W

(HOST Acknowledge)

(HOST Request)

HEN
(HOST Enable)

(HOST Read/Write)

HA2-HA0
(HOST Address)

H7-H0
(HOST Data)

 MC68HC11

DSP56000/DSP56001

APR5Section8 Page 3 Friday, December 15, 1995 11:27 AM
the HI is the host command option. If desired, the
host processor can execute any one of 32 interrupt
vectors in the DSP56000/DSP56001. The possible
functions that the host can execute are listed in
Figure 8-4. Loading a value into the command vec-
tor register causes the DSP to execute the
corresponding fast interrupt.

Address
Decode

LE
Address

Latch

A7-A3

A2-A0

IRQ

R/W

A15-A8

E

AS

A7/D7-A0/D0

• Use LDA and STA for 8-bit transfers.
• Use LDD and STD for 16-bit transfers.

Figure 8-3 Connecting the DSP56000/DSP56001 to the
via the Host Port

MC68HC11
MOTOROLA 8-3

8-4

APR5Section8 Page 4 Friday, December 15, 1995 11:27 AM
MOTOROLA

PROGRAM

Exce

$0000 Hardware RES
$0002 Stack Error
$0004 Trace
$0006 SWI (Software
$0008 IRQA External
$000A IRQB External
$000C SSI Receive D
$000E SSI Receive D
$0010 SSI Transmit D
$0012 SSI Transmit D
$0014 SCI Receive D
$0016 SCI Receive D
$0018 SCI Transmit D
$001A SCI Idle Line
$001C SCI Timer
$001E Reserved for H
$0020 HOST Receive
$0022 HOST Transm
$0024 HOST Comma
$0026 Available for H
$0028 Available for H
$002A Available for H
$002C Available for H
$002E Available for H
$0030 Available for H
$0032 Available for H
$0034 Available for H
$0036 Available for H
$0038 Available for H
$003A Available for H
$003C Available for H
$003E Illegal Instructi

NOTES: 1. The vect
2. Each vec

Two
One

Figure 8-4 DSP56000

Exception
Starting
 Address

APR5Section8 Page 5 Friday, December 15, 1995 11:27 AM
 MEMORY SPACE

ption Source

ET

 Interrupt)
 Hardware Interrupt
 Hardware Interrupt
ata
ata with Exception Status
ata
ata with Exception Status
ata
ata with Exception Status
ata

ardware Development
 Data
it Data
nd (Default)
OST Command
OST Command
OST Command
OST Command
OST Command
OST Command
OST Command
OST Command
OST Command
OST Command
OST Command
OST Command
on

or table contains instructions, not addresses.
tor location can contain:
one-word instructions
two-word instruction

/DSP56001 Fast Interrupt Vectors

Two Words per Vector

External
Interrupts

Synchronous
Serial

Interface

Synchronous
Communications

Interface

Host
Interface

Internal
Interrupts

Internal
Interrupts
MOTOROLA 8-5

8-6

APR5Section8 Page 6 Friday, December 15, 1995 11:27 AM
Twelve host command vectors are available for
general-purpose programming. If any of the remain-
ing predefined interrupts are not used, such as the
software interrupt or the SCI idle interrupt, they can
also be used as general-purpose command vec-
tors. These host command vectors give much
flexibility to the system designer. The DSP56000/
DSP56001 program in Figure 8-5 provides one ex-
ample of the power of the HI.

In Figure 8-5, the host command vectors are used
to alter PID coefficients in real time without recom-
piling the routine or halting the DSP56000/
DSP56001. These parameters could be input to the
host from a front panel or some software menu for-
mat. First, the host processor writes the new PID
coefficient to TXH, TXM, and TXL registers on the
host processor side of the HI. Next, the host must
write the appropriate host command number to the
DSP command vector register (CVR). For example,
to alter b0, the value $92 must be written to the
CVR, which sets the HC bit and causes the
DSP56000/DSP56001 to initiate a host command.
Once the DSP recognizes that a host command
vector is pending, it jumps to location $24 and exe-
cutes the corresponding fast interrupt.

8.2 SCI Port
The SCI provides a port for asynchronous serial com-
munication to other DSPs, microprocessors, etc.,
either directly or via modems. It includes facilities for
MOTOROLA

APR5Section8 Page 7 Friday, December 15, 1995 11:27 AM
communicating by using standard asynchronous bit
rates and protocols as well as high-speed synchro-
nous data transmission. The asynchronous port
includes a multidrop mode for master/slave opera-
tion with wakeup on idle line and wakeup on
address capability. In some control applications, the
SCI port provides an inexpensive method for com-
municating with the DSP56000/DSP56001 via a
terminal and a simple monitor program.

If the baud rate generator in the SCI port is not used
for asynchronous communication timing, it can be
configured as a general-purpose timer. Figure 8-6
shows how to configure the SCI programmable tim-
er using the SCI clock control register. The system
clock is initially divided by 2. Then, depending upon
the values stored in the 12 CD bits, the clock is di-
vided by a number from 1 to 4096. A prescale bit
allows the programmer to further divide the clock by
a factor of 8.

Finally, the clock is divided by a factor of 2 and a fac-
tor of 16. The resolution of SCI timer, ∆t, is 32ti ≤ ∆t
≤ 1,048,576ti, where ti is the instruction cycle time of
the DSP. For the 27-MHz DSP56000/DSP56001,
the resolution of the timer is 2.4 s ≤ ∆t ≤ 77.6 ms. In
future revisions of the DSP56000/DSP56001, the fi-
nal divide-by-16 block in Figure 8-6 will be optional,
further reducing the resolution of the timer to the
minimum interrupt rate of 6t. For this future revision,
the minimum resolution of the timer will be 444 ns at
27 MHz.

µ

MOTOROLA 8-7

8-8

APR5Section8 Page 8 Friday, December 15, 1995 11:27 AM
MOTOROLA

ervice routine

 1 service routine
ficient
 fast interrupt

 2 service routine
ficient
 fast interrupt

 3 service routine
ficient
 fast interrupt

 4 service routine
ficient
 fast interrupt

 5 service routine
ficient
 fast interrupt

in routine
terface interrupts

mmand interrupt
nterface
errupts

le from A/D
ple
t to D/A

s in Real Time without
000/DSP56001

APR5Section8 Page 9 Friday, December 15, 1995 11:27 AM
include 'declare.dat'

input equ $fffe ;address of A/D
output equ $ffff ;address of D/A

;**
;X Memory Declaration
;**
 org x:0
b_0 ds 1 ;b(0) coefficient
b_1 ds 1 ;b(1) coefficient
b_2 ds 1 ;b(2) coefficient
b_1 ds 1 ;a(1) coefficient
b_2 ds 1 ;a(2) coefficient

;**
;Fast Interrupt Definitions
;**

org p:reset ;loc of RESET s
jump main ;begin at main

org p:hc1 ;location of HC
movep x:hrx,x:b_0 ;update b0 coef
nop ;second word of

org p:hc2 ;location of HC
movep x:hrx,x:b_1 ;update b1 coef
nop ;second word of

org p:hc3 ;location of HC
movep x:hrx,x:b_2 ;update b2 coef
nop ;second word of

org p:hc4 ;location of HC
movep x:hrx,x:a_1 ;update a1 coef
nop ;second word of

org p:hc5 ;location of HC
movep x:hrx,x:a_2 ;update a2 coef
nop ;second word of

;**
;Main Routine
;**

org p:main ;location of ma
movep #$0A00,x:ipr ;enable host in
movep #0,x:bcr ;no wait states
movep #$04,x:hcr ;enable host co
movep #1,x:pbc ;turn on host i
andi #$FC,mr ;enable all int

start
movep y:input,x0 ;get input samp
jsr filter ;filter the sam
movep a,y:output ;send the outpu

Figure 8-5 Program Language that Alters PID Coefficient
Recompiling the Routine or Halting the DSP56
MOTOROLA 8-9

8-10

TCM RCM SCP COD CX:$FFF2

Divide
by 2

Period
Divid

P:$

15 14 13 12

Figure 8-6 Functional

If SCP =
If SCP =

APR5Section8 Page 10 Friday, December 15, 1995 11:27 AM
8.3 SSI Port
The SSI can be used to receive and transmit data
from serial A/Ds, D/As, and CODECs with little or no
glue logic. The SSI is a full-duplex six-pin port that
includes a serial transmit pin, a serial receive pin, a

D11 CD10 CD9 CD8 CD7 CD6 CD5 CD4 CD3 CD2 CD1 CD0

SCI Clock Control Register (SCCR)

(Read/Write)

Divide by 1
to 4096

Divide
by 2

SCI Timer

SCI Timer
Interrupt
Service
Routine

ic Timer
e by 16

f osc
20.5 MHz

Interrupt
Vector
Table

001C

2.4 µs < Resolution of the Timer < 77.6 ms

11 10 9 8 7 6 5 4 3 2 1 0

Diagram of SCI Programmable Timer

Prescaler
 1, then divide by 8
 0, then divide by 1
MOTOROLA

APR5Section8 Page 11 Friday, December 15, 1995 11:27 AM
serial clock pin, and three frame sync/output flag
pins. The port is full duplex, and the programmable
frame sync can be used to gate the transmitted/re-
ceived data. The SSI also allows the DSP56000/
DSP56001 to communicate serially with multiple
processors in a network. The network mode allows
up to 32 different time slots for communication with
other processors or I/O devices.

8.4 General-Purpose
I/O Pins

An alternative to using the HI, SSI, and SCI is to con-
figure the ports as general-purpose I/O pins. A port
control register is associated with both ports B and
C, allowing the port pins to be selected as either
general-purpose I/O pins or dedicated peripheral
pins. All 15 pins of port B must function as either I/O
pins or as the HI. However, all individual pins of port
C can be configured separately. For instance, if the
serial transmitter of the SSI is not used, PC8 can be
configured as an I/O pin while PC3-PC7 perform
their assigned SSI functions. A port pin selected as
a general-purpose I/O pin is accessed through the
corresponding port data register. Data written to the
port data register is latched.

One possible use of the 15 port B I/O pins would be
in disk drives. Figure 8-7 indicates how the
DSP56000/DSP56001 might be used in a hard disk
MOTOROLA 8-11

8-12

Disk Drive
Controller

such as the
MC68HC99

Other Signals
for Standard Inte
(ESDI, ST-506, S
or Custom Interf

SCSI

Disk Drive Contro

Figure 8-7 Connecting
Disk Drive C

APR5Section8 Page 12 Friday, December 15, 1995 11:27 AM
drive system. Data is transmitted from the host
computer via an SCSI bus or some other standard
format. A hard disk controller, such as the
MC68HC99, decodes the data and performs the
appropriate error detection and correction. The data
is then transmitted into the disk drive by some stan-
dard serial interface, such as ESDI or ST-506.

RDNRZ-
RDNRZ+
RDCLK-
RDCLK+
WRCLK-
WRCLK+
WRNRZ-
WRNRZ+
RDGATE
WRTGATE
DS1

ESDI
AME
HS3
HS2
HS1
HS0
CMDATA
XREQ
XACK
READY
ATTEN
CS DATA

Read/Write
Electronics

rface
MD)
ace

Read/Write
Signals

Inside Hard Disk Driveller Board

Port B I/O Pins
or Host I/O Port

DSP56000

Head
Control

Spindle
Control

Temperature Specs for DSP56000:
-40°C to +85°C

 the DSP56000/DSP56001 to the MC68HC99
ontroller via the Port B I/O Lines
MOTOROLA

APR5Section8 Page 13 Friday, December 15, 1995 11:27 AM
Analog electronics handle the actual reading and
writing of data to the disk; whereas, the DSP56000/
DSP56001 decodes the high-level addressing infor-
mation to correctly position the head assembly at
the desired track location.

In addition to controlling the head, the DSP56000/
DSP56001 would also be responsible for regulating
the speed of the spindle. Unused I/O pins would be
able to provide fault detection signals to the head
and spindle motors, including stuck rotor shutdown.
Since the temperature specifications for the
DSP56000/DSP56001 are -40°C to +85°C, the chip
should not have any problems operating in the
sealed hard disk environment.

8.5 External Interrupts
The DSP56000/DSP56001 provides two external
hardware interrupts, which can be programmed as
either negative edge triggered or level sensitive.
One possible use of the interrupts would be to pro-
vide velocity feedback. In many cases, velocity
information is used in motor control. For instance,
an optical sensor could be used to recognize one
or more equally spaced notches in the spindle of a
disk drive. The rotational velocity of the spindle is
proportional to the amount of time between con-
secutive notches.
MOTOROLA 8-13

8-14

Velocity-
Feedback

Information

Event PT

PT

PT

PT
EVENT

PT

PT

PT

Figure 8-8 Using Exte

t = Resolution of P

APR5Section8 Page 14 Friday, December 15, 1995 11:27 AM
Figure 8-8 shows how the external interrupts, in
conjunction with the SCI timer, can be used to pro-
vide velocity feedback. In Figure 8-8, velocity-
feedback information from the optical sensor is in-
put directly into IRQA. It is desired to determine the
amount of time between the two consecutive puls-
es. If the SCI timer is not being used for data
communications, it is free for indicating the time be-
tween notches. An address register (R1) is used as
the velocity counter. Once the SCI timer times out,
the velocity counter is incremented in the SCI timer
fast interrupt. The counter is continuously incre-

DSP56001

IRQA

?

PT PT t

MOVE
NOP

(R1)+

SCI Timer (Two-Instruction-Cycle Fast Interrupt)

Interrupt A (Standard Interrupt Service Routine)
JSR VEL

Process Velocity
RESET R1
RTI

rnal Interrupts to Provide Velocity-Feedback Information

VEL

rogrammable Timer (PT)
MOTOROLA

routine

outine
ion

ice routine

n

 level 2
iggered

ate

ng IRQA and the

APR5Section8 Page 15 Friday, December 15, 1995 11:27 AM
mented until the next notch triggers the IRQA fast
interrupt. Once this interrupt occurs, the velocity
timer (R1) is read, and the difference between the
value of the counter for this notch and the previous
notch indicates the velocity of the spindle. In effect,
this example shows how the SCI timer can be used
to provide a readable timer in software. Also, the
SCI serial clock pin (SCLK) is available as a gener-
al-purpose I/O pin. The DSP56000/DSP56001
software for calculating the velocity in this example
is shown in Figure 8-9.

include 'declare.dat

;***
;Interrupt Service Routine Definitions
;***

org p:reset ;RESET interrupt service
jmp main ;go to main

org p:irqa ;IRQA interrupt service r
jsr velocity ;update velocity informat

org p:timer ;SCI timer interrupt serv
move (r0)+ ;update velocity counter
nop ;unused second instructio

;***
;Main Routine
;***
 org p:main ;main routine

movep #$C007,x:ipr ;set SCI,IRQA to priority
;IRQA is negative edge tr

movep #$0,x:bcr ;no wait states
movep #$0,x:sccr ;fastest possible timer r
movep #$2000,x:scr ;timer interrupt enable
move #0,r1
andi #$FC,mr ;unmask all interrupts

jmp *

velocity
; process velocity information

move #0,r0
rti

Figure 8-9 Measuring the Disk Drive Spindle Velocity Usi
SCI Timer
MOTOROLA 8-15

8-16

APR5Section8 Page 16 Friday, December 15, 1995 11:27 AM
Since the SCI timer is automatically reset and con-
tinues to run after it times out, the amount of time
required to process the fast interrupt does not affect
the overall calculation.

8.6 Generating Pulse-Width
Modulated Outputs
Using the SCI Timer

General-purpose I/O pins can be changed into PWM
outputs with the aid of the SCI timer and modulo ad-
dressing. The DSP56000/DSP56001 assembly
language program shown in Figure 8-10 is used to
generate the PWM output shown in Figure 8-11.

The program pulse-width modulates the three gen-
eral-purpose I/O pins, PC2-PC0. Instead of
programming a duty cycle for each pin, the program
increments through a table of values that control the
voltage levels of each I/O pin. The SCI timer is used
to generate periodic interrupts. The interrupt priority
registered is configured to enable the SCI timer.
When the timer times out, the fast interrupt associ-
ated with the SCI timer is executed. This interrupt
service routine moves a new data value to the port
C data register to toggle the appropriate PWM out-
puts. By executing an infinite loop of NOPS, the
programmer is able to make the PWM outputs syn-
chronous. As with all interrupts, the latency
between when the interrupt is asserted and when
MOTOROLA

APR5Section8 Page 17 Friday, December 15, 1995 11:27 AM
the first instruction of the fast interrupt is executed
is dependent upon what instructions are being
fetched, decoded, and executed at the time the in-
terrupt is received. The reason for continuously
executing NOPs is to guarantee that the pipeline is
always filled with single-cycle instructions, allowing
synchronous PWM output. If NOPs are not used,
the PWM outputs exhibit a small jitter of a few in-
structions cycles, depending on which instructions
are in the pipeline.
MOTOROLA 8-17

8-18

veform definitions
|
|
|_

|
|
|
|
|

p to main

voltages
instr

errupts
a pointer
modulo 8
uts
er
tion for timer
errupts

op of nops
xt timer interrupt

ral Purpose I/O pins

APR5Section8 Page 18 Friday, December 15, 1995 11:27 AM
include ‘declare.dat’

org x:0 ;PWM output wa
data dc %111 ; |_ |

dc %011 ; _| |_
dc %101 ; |_ _|
dc %001 ; _| |
dc %110 ; |_ |
dc %010 ; _| |_
dc %100 ; |_ |
dc %000 ; | |

org p:reset
jmp main ;upon reset, jm

org p:timer ;alter I/O pin
jmp x:(r0)+,x:pcd ;unused second
nop

org p:main ;main program
movep #$C000,x:ipr ;enable sci int
move #date, r0 ;initialize dat
movep #7,m0 ;cir buffer is
movep #7,x:pcddr ;PC2-0 are outp
movep #$2000,x:scr ;enable sci tim
movep #0,x:sccr ;minimum resolu
andi #$FC,mr` ;enable all int

here
do #10000,end_do ;infinite do lo
nop ;waiting for ne

end_do
jmp here

Figure 8-10 Generating Three PWM Signals on the Gene
Using the SCI Timer and Modulo Addressing
MOTOROLA

8-19

PC0

PC1

PC2

Figure 8-11 Outputs G

APR5Section8 Page 19 Friday, December 15, 1995 11:27 AM

8.7 Generating Three-Phase
Out-puts Using Modulo
Addressing

Modulo addressing can be used to provide a unique
solution to the generation of the commutator signals
for a three-phase motor. Figure 8-12 illustrates how
three address registers point into a table containing
a digitized version of the required waveform. In this
example, a sine wave is used to control the motor,
but any waveform can be stored in the waveform ta-
ble. The speed of the motor is changed by varying
the distance between the three address registers.
When the end of the table is reached, the modulo
addressing causes each of the individual address
registers to wrap around and point to the beginning
of the table again. The end result is a continuous,

enerated from the PWM Example
MOTOROLA

8-20

ulo Addressing

TV1

TV2

TV3

APR5Section8 Page 20 Friday, December 15, 1995 11:27 AM
three-phase, periodic output that can be custom-
ized for different motor types.

The DSP56000/DSP56001 software for implement-
ing the three-phase output is shown in Figure 8-13.

■

Figure 8-12 Generating Three-Phase Output Using Mod

Digitized
Table of A

Voltage
Waveform
(Modulo M)

Speed
Control

R1

R2

R3

D/A

Analog
Demux

with
Hold
MOTOROLA

8-21

include ‘declare

D_A1 equ $FFFD
D_A2 equ $FFFE
D_A3 equ $FFFF

org p:reset
jmp main

org p:timer
jsr output

org p:main
movep #$FC#C,

movep #2,x:bc
ori #4,omr
move #$100,r
move #255,m1
move #$140,r
move #255,m2
move #$180,r
move #255,m3
move #$FC,mr

jmp *

output

movep y:(r1)+

;repeat nops if delay i

movep y:(r2)+

;repeat nops if delay i

movep y:(r3)+

rti

Figure 8-13 Generatin
SCI Time

APR5Section8 Page 21 Friday, December 15, 1995 11:27 AM
.dat’

;address of first D_A
;address of second D_A
;address of third D_A

;hardware reset int service routine

;SCI timer interrupt service routine
;output three phase voltages to D_As

;location of main routine
x:ipr ;unmask edge triggered interrupt

; and wait for interrupt to occur.
r ;I/O wait states = 2

;enable the data ROMs
1 ;r1 points to beginning of sine wave

;r1 is modulo 256
2 ;r2 is 90° out of phase6

;r2 is modulo 256
3 ;r3 is 180° out of phase

;r3 is modulo 256
;enable all interrupts

,y:D_A1 ;output phase 1

s needed for multiplexed D_A

,y:D_A2 ;output phase 2

s needed for multiplexed D_A

,y:D_A3 ;output phase 3

g Three-Phase Signals for Motor Control Using the
r and Sine Wave Table
MOTOROLA

MOTOROLA

SECTION 9

Conclusion

“All these
features give

the DSP56000/
DSP56001 the

power to solve
many of the

world's difficult
embedded

control
problems.”
The unique architecture of the DSP56000/
DPS56001 enables it to function as a powerful mi-
crocontroller as well as a DSP. The dual data spaces
allow a highly parallel implementation of basic con-
trol algorithms such as PID controllers and notch
filters. The kernel of the biquad section can be exe-
cuted in four to six instruction cycles. The increased
throughput allows higher sampling rates and reduc-
es the amount of negative phase added to the
overall system due to the computational delay.

The reduced effects of coefficient quantization en-
able the DSP56000/DSP56001 to implement
numerically sensitive algorithms such as phase-lag
controllers and narrow-band low-pass filters having
poles near the z= ±1points. The 56-bit accumula-
tors, which provide 8-bit extension registers in
conjunction with saturation arithmetic, allow the
DSP to avoid overflow conditions and limit cycles. In
addition, the output noise power due to roundoff
noise of the 24-bit DSP56000/DSP56001 is 65,536
times less than that for 16-bit DSPs and
microcontrollers.
9-1

9-2

Finally, the three on-chip peripherals, the HI, the
SSI, and the SCI, allow the DSP56000/DSP56001
to function with minimal glue logic in an embedded
control system. The two external hardware inter-
rupts in conjunction with the SCI timer can be used
to provide velocity feedback. The modulo arith-
metic available in the address ALU can be used to
efficiently implement PWM and finely tuned, three-
phase output voltages. All these features give the
DSP56000/DSP56001 the power to solve many of
the world's difficult embedded control problems.■
MOTOROLA

MOTOROLA

ipr equ $
bcr equ $
srxh equ $
stxh equ $
srxm equ $
stxm equ $
srxl equ $
stxl equ $
stxa equ $
sccr equ $
ssr equ $
scr equ $
rx equ $
tx equ $
ssisr equ $
crb equ $
cra equ $
htx equ $
hrx equ $
hsr equ $
hcr equ $
pcd equ $
pbd equ $
pcddr equ $
pbddr equ $
pcc equ $
pbc equ $

Figure A-1 Location

APPENDIX A

Listing of ‘declare.dat’
This appendix contains all of the equates for the lo-
cations of the DSP56000/DSP56001's peripheral
registers and interrupt service routines.

FFFF ;interrupt priority register
FFFE ;port a bus control register
FFF6 ;sci high rec register
FFF6 ;sci high xmit register
FFF5 ;sci middle rec register
FFF5 ;sci middle xmit register
FFF4 ;sci low rec register
FFF4 ;sci low xmit register
FFF3 ;sci transmit data address register
FFF2 ;sci clock control register
FFF1 ;sci status register
FFF0 ;sci control register
FFEF ;ssi rx register
FFEF ;ssi tx register
FFEE ;ssi status register
FFED ;ssi control register b
FFEC ;ssi control register a
FFEB ;host transmit register
FFEB ;host receive register
FFE9 ;host status register
FFE8 ;host control register
FFE5 ;port c data register
FFE4 ;port b data register
FFE3 ;port c data direction register
FFE2 ;port b data direction register
FFE1 ;port c control register
FFE0 ;port b control register

 of the Peripheral Registers
A-1

A-2

reset equ $00
stkerr equ $02
trace equ $04
swi equ $06
irqa equ $08
irqb equ $0A
ssirx equ $0C
ssirxex equ $0E
ssitx equ $10
ssitxex equ $12
scirx equ $14
scirxex equ $16
scitx equ $18
sciidle equ $1A
timer equ $1C
harddev equ $1E
hostrx equ $20
hosttx equ $22
hc1 equ $24
hc2 equ $26
hc3 equ $28
hc4 equ $2A
hc5 equ $2C
hc6 equ $2E
hc7 equ $30
hc8 equ $32
hc9 equ $34
hc10 equ $36
hc11 equ $38
hc12 equ $3A
hc13 equ $3C
main equ $40

Figure A-2 Location o
■

;reset interrupt service routine
;stack error interrupt service routine
;trace interrupt service routine
;software interrupt service routine
;irqa interrupt service routine
;irqb interrupt service routine
;ssi receive interrupt service routine
;ssi receive with exception interrupt service routine
;ssi transmit interrupt service routine
;ssi transmit with exception interrupt service routine
;sci receive interrupt service routine
;sci receive with exception interrupt service routine
;sci transmit interrupt service routine
;sci idle interrupt service routine
;sci timer interrupt service routine
;hardware development interrupt service routine
;host receive interrupt service routine
;host transmit interrupt service routine
;HC 1 interrupt service routine
;HC 2 interrupt service routine
;HC 3 interrupt service routine
;HC 4 interrupt service routine
;HC 5 interrupt service routine
;HC 6 interrupt service routine
;HC 7 interrupt service routine
;HC 8 interrupt service routine
;HC 9 interrupt service routine
;HC 10 interrupt service routine
;HC 11 interrupt service routine
;HC 12 interrupt service routine
;HC 13 interrupt service routine
;main routine

f the Fast Interrupt Service Routines
MOTOROLA

MOTOROLA Reference-1

1. Astrom, K. and B. Wittenmark,

Computer
Controlled Systems,

 Englewood Cliffs, NJ:
Prentice-Hall, 1984.

2.

DSP56ADC16 Data Sheet

, “16-Bit Sigma-
Delta Analog-to-Digital Converter,” Motorola,
1989.

3.

DSP56000/DSP56001 Digital Signal
Processor User's Manual

, Motorola, 1989.

4. Hanselmann, H., “Implementation of Digital
Controllers—A Survey,”

 Automatica

, vol. 23,
no. 1, 1987, pp. 7-32.

5. Jackson, L.,

 Digital Filters and Signal
Processing

, Boston, MA: Kluwer Academic
Publishers, 1986.

6. Kuo, B.,

Digital Control Systems

, New York,
NY: Holt, Rienhart and Winston, Inc. 1980.

7. Kuo, B.,

Automatic Control Systems

,
Englewood Cliffs, NJ: Prentice-Hall, 1987.

8. Moroney,

Issues in the Implementation of
Digital Feedback Compensators

, Cambridge,
MA: The MIT Press, 1983.

9. Oppenheim, A. and R. Schafer,

Digital Signal
Processing

, Englewood Cliffs, NJ: Prentice-
Hall, 1975.

10. Phillips, C. and H. Nagle,

Digital Control
System Analysis and Design

, Englewood
Cliffs, NJ: Prentice-Hall, 1984.

11. Roberts, R. A. and C. T. Mullis,

Digital Signal
Processing

, Reading, MA: Addison-Wesley,
1987.

■

REFERENCES

Motorola reserves the right to make changes without further notice to any products here-
in. Motorola makes no warranty, representation or guarantee regarding the suitability of
its products for any particular purpose, nor does Motorola assume any liability arising out
of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation consequential or incidental damages. “Typical” pa-
rameters can and do vary in different applications. All operating parameters, including
“Typicals” must be validated for each customer application by customer’s technical ex-
perts. Motorola does not convey any license under its patent rights nor the rights of oth-
ers. Motorola products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer
purchase or use Motorola products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affili-
ates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claim alleges
that Motorola was negligent regarding the design or manufacture of the part. Motorola
and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportu-
nity/Affirmative Action Employer.

	Motorola Digital Signal Processors
	Introduction
	Classical Analog Controls
	Figure 2-1 General Analog Control System
	Figure 2-2 Transient Response of a Second-Order Sy...
	Figure 2-3 Typical Step-Response Characteristics I...

	Controllers
	Figure 3-1 General Feedback Control System with Co...
	3.1 Increasing the Gain to 3.1 Reduce the Rise Tim...
	Figure 3-2 Step Response of a Closed-Loop Feedback...

	3.2 Adding a Derivative 3.2 Term to Reduce 3.2 Ove...
	Figure 3-3 Output, c(t), Error, e(t), and the Deri...

	3.3 Adding an Integral 3.3 Term to Eliminate 3.3 S...

	Notch Filters
	Figure 4-1 Frequency Response

	Control in the Digital Domain
	Implementation of Digital Controllers and Filters
	Figure 6-1 Cascade and Parallel Implementations of...
	Figure 6-2 Biquad Sections
	Figure 6-3 Sixth-Order Controller Implemented in C...
	Figure 6-4 Figure 6-3 Sixth-Order Controller Trans...
	6.1 The Magnitudes of 6.1 ai(1) and ai(2) are 6.1 ...
	Figure 6-5 DSP56000/DSP56001 Assembly Language Pro...
	Figure 6-5 DSP56000/DSP56001 Assembly Language Pro...

	6.2 Initialization
	Figure 6-6 Memory Map for the Sixth-Order PID Cont...

	6.3 PID Compensation 6.3 Algorithm
	6.4 The Magnitude of ai(1) 6.4 is Greater than Uni...
	Figure 6-7 Stability Triangle that Illustrates the...
	Figure 6-8 Code Kernel that Implements the Modifie...
	Figure 6-9 Modified Direct Form II Biquad Section

	6.5 All bi(0) Coefficients 6.5 are 1; bi(1), bi(2)...
	Figure 6-10 Code Kernel that Implements the Most E...

	6.6 Computational Delay

	Finite-Length Register Effects
	7.1 Coefficient Quantization
	Figure 7-1 Location of the Quantized Poles for a 3...

	7.2 Overflow
	7.3 Roundoff Noise
	Figure 7-2 Roundoff Noise Sources for Direct Form ...
	Figure 7-3 Output Noise Power for a Direct Form I ...

	7.4 Implementation of the 7.4 Gain, g

	System Considerations
	Figure 8-1 DSP56000/DSP56001 Functional Signal Gro...
	Figure 8-2 Connecting the DSP56000/DSP56001 to the...
	8.1 Host Interface Port
	Figure 8-3 Connecting the DSP56000/DSP56001 to the...
	Figure 8-4 DSP56000/DSP56001 Fast Interrupt Vector...

	8.2 SCI Port
	Figure 8-5 Program Language that Alters PID Coeffi...
	Figure 8-6 Functional Diagram of SCI Programmable ...

	8.3 SSI Port
	8.4 General-Purpose 8.4 I/O Pins
	Figure 8-7 Connecting the DSP56000/DSP56001 to the...

	8.5 External Interrupts
	Figure 8-8 Using External Interrupts to Provide Ve...
	Figure 8-9 Measuring the Disk Drive Spindle Veloci...

	8.6 Generating Pulse-Width 8.6 Modulated Outputs 8...
	Figure 8-10 Generating Three PWM Signals on the Ge...
	Figure 8-11 Outputs Generated from the PWM Example...

	8.7 Generating Three-Phase 8.7 Out -puts Using Mod...
	Figure 8-12 Generating Three-Phase Output Using Mo...
	Figure 8-13 Generating Three-Phase Signals for Mot...

	Conclusion
	Listing of ‘declare.dat’
	Figure A-1 Location of the Peripheral Registers
	Figure A-2 Location of the Fast Interrupt Service ...

	References
	1. Astrom, K. and B. Wittenmark, Computer 1. Contr...
	2. DSP56ADC16 Data Sheet, “16-Bit Sigma- 2. Delta ...
	3. DSP56000/DSP56001 Digital Signal 3. Processor U...
	4. Hanselmann, H., “Implementation of Digital 4. C...
	5. Jackson, L., Digital Filters and Signal 5. Proc...
	6. Kuo, B., Digital Control Systems, New York, 6. ...
	7. Kuo, B., Automatic Control Systems, 7. Englewoo...
	8. Moroney, Issues in the Implementation of 8. Dig...
	9. Oppenheim, A. and R. Schafer, Digital Signal 9....
	10. Phillips, C. and H. Nagle, Digital Control 10....
	11. Roberts, R. A. and C. T. Mullis, Digital Signa...

