MOTOROLA e, 0, 22000

Semiconductor Products Sector Application Note

Programming the DSP56300 OnCE Contents
and JTAG Ports 1 Introductioncoo...coovveeereveennee. 1

2 OnCEModule........cccoevrurunnes 1
by Barbara Johnson 2.1 OnCE Controller........c.cceceveverereenne 3
2.1.1 OnCE Command Register (OCR) ... 3

. 2.1.2 OnCE Status and Control Register
1 Introduction (OSCRY oo 4
2.2 OnCE Memory Breakpoint Logic ... 5
This application note describes the DSP56300 OnCE and JTAG 2.3 OnCE Trace Logic.....cccoovnrurrnnnnc. 6

ports and explains how they interact. A series of examples 24 I};ipe.““e Information and the OGDB6
(574 181 1) SO

demonstrates how to use the OnCE and JTAG ports to enter the 25 0
L . . nCE Trace Buffer..........cccccvenennnen. 7
Debug mode, save pipeline registers, read from the trace buffer, 3 JTAG Port

write to memory, and read from memory. For more information 3.1 TAP Controllerooveorrrrrrrrrrn.
on the OnCE and JTAG ports, see the applicable sections of the 3.2 Signals .o
DSP56300 Family Manual. 3.3 JTAG Instruction Register

3.4 JTAG ID Register.........cccoevvrenenne.
3.5 JTAG Boundary Scan Register...... 12

4 Serial Protocol.........coceuveneen. 12
2 OnCE MOdU|e 5 Examplesof ONCE/JTAG
INteractionccceveeveveeeeieennne 13

The On-Chip Emulation (OnCE) module allows you to examine 5.1 Entering the Test Logic Reset

registers, memories, and on-chip peripherals, which facilitates SEALE covoerrererseieseesee e eeseeniees 13

hardware and software development on the DSP56300 core 5.2 Executing the JTAG

processor. The OnCE module interacts with the core and its DEBUG_REQUEST

peripherals non-intrusively and is accessed through the JTAG InstrucFlon 15
. 5.3 Executing the JTAG

port (see JTAG Port on page 7). Figure 2-1, OnCE Port ENABLE ONCE Instruction........ 15

Architecture, on page 2 shows the OnCE port architecture. 5.4 Reading the Pipeline Registers...... 16
5.5 Reading the Trace Buffer
5.6 Writing to Memory.............
5.7 Reading from Memory

2
S
o
V]
<
[y
-

Programming the DSP56300 OnCE and

@ MOTOROLA

© Motorola, Inc. 2000

TDI

TCK

DO -l

DE . OSCR

LA

OCR

OnCE CONTROLLER

OPDBR

OPILR

OGDBR

OnCE PIPELINE INFO

OoTC

OnCE TRACE LOGIC

PAB DECODE

PAB EXECUTE

PAB FETCH > PAB

OMAL

g§—— PAB
~d—— XAB

-4— YAB

OMACO

OMLRO

OMAC1

OMLR1

OBCR

OMBC

OnCE BREAKPOINT LOGIC

Trace Buffer Reg 0

Trace Buffer Reg 11

KA

POINTER

Trace Buffer Shift Reg

OnCE TRACE BUFFER

Figure 2-1. OnCE Port Architecture

Programming the DSP56300 OnCE and JTAG Ports

OnCE Controller

2.1 OnCE Controller

To communicate with the OnCE controller, the DSP must be in Debug mode. To enter Debug mode from a
hardware or software breakpoint, either single step through opcodes or assert the DE pin.

A state machine decodes 8-bit commands specified in the OnCE Command Register (OCR) and controls
the interaction with the OnCE registers. The OCR receives serial data from the TDI signal.

The OnCE decoder (ODEC) receives the 8-bit command from the OCR, a signal from the JTAG controller
to indicate that it has received 8 or 24 bits and that an update of the selected data register must be
performed, and a signal indicating that the core has halted.

The 24-bit OnCE Status and Control Register (OSC) enables trace mode and indicates the reason for
entering Debug mode.

2.1.1 OnCE Command Register (OCR)
Table 2-1 shows the OCR and Table 2-2 shows the selected OCR registers.

Table 2-1. OnCE Command Register (OCR) Bits

Bit Name Description
7 R/W =0 Writes the data associated with the command into the register
Read/Write Command specified by RS[4-0].
R/W =1 Reads the data in the register specified by RS[4-0].

6 GO =0 Inactive. No action taken.

Go Command GO=1 Executes the instruction in the OPILR register. See Pipeline
Information and the OGDB Register on page 6.

5 EX=0 Remains in Debug mode.

Exit .
xit Command EX=1 Leaves Debug mode and resumes normal operation.
4-0 RS[4-0] Register select bits that define which register is the source or

Register Select destination for read or write operations. Refer to Table 2-2.

Table 2-2. OCR Register Select Bits

RS[4-0] Register Selected See Also

00000 OnCE Status and Control Register (OSCR). OnCE Status and Control Register (OSCR) on
page 4.

00001 Memory Breakpoint Counter (OMBC). OnCE Memory Breakpoint Logic on page 5.

00010 Breakpoint Control Register (OBCR). OnCE Memory Breakpoint Logic on page 5

00101 Memory Limit Register 0 (OMLRO). OnCE Memory Breakpoint Logic on page 5

00110 Memory Limit Register 1 (OMLR1). OnCE Memory Breakpoint Logic on page 5

01001 GDB Register (OGDBR). Pipeline Information and the OGDB Register on
page 6.

01010 PDB Register (OPDBR). Pipeline Information and the OGDB Register on
page 6.

A MOTOROLA Programming the DSP56300 OnCE and JTAG Ports 3

OnCE Controller

Table 2-2. OCR Register Select Bits (Continued)

RS[4-0] Register Selected See Also

01011 PIL Register (OPILR). Pipeline Information and the OGDB Register on
page 6.

01100 PDB GO-TO Register (for GO TO command) N/A
01101 Trace Counter (OTC). See OnCE Trace Logic on page 6.
01110 Tags Buffer (TAGB). N/A
01111 PAB Register for Fetch (OPABFR). OnCE Trace Buffer on page 7.
10000 PAB Register for Decode (OPABDR). OnCE Trace Buffer on page 7.
10001 PAB Register for Execute (OPABEX). OnCE Trace Buffer on page 7.
10010 Trace Buffer and Increment Pointer. OnCE Trace Buffer on page 7.
11111 No Register Selected N/A

2.1.2 OnCE Status and Control Register (OSCR)
Table 2-3 shows the OSCR.

Table 2-3. OnCE Status and Control Register (OSCR) Bits

Bit Name Description
23-8 Reserved
7-6 0S1=0| OS0=0| DSP56300 core is executing instructions
Core Status 0S1=0| OS0=1| DSP56300 core is in wait or stop
0S1=1| OS0=0| DSP56300 core is waiting for the bus
0S1=1| OS0=1| DSP56300 core is in Debug mode
5 HIT=0 Cache hit has not occurred.
Cache Hit HIT=1 Cache hit has occurred in Cache mode and in Debug mode.
4 TO=0 DSP56300 core leaves Debug mode.
Trace Occurrence TO=1 Debug mode is entered because trace counter is 0 while
trace mode is enabled.
3 MBO =0 DSP56300 core leaves Debug mode.
Menchrzulfrr::ggoint MBO =1 Debug mode is entered because a memory breakpoint has
been encountered.
2 SWO =0 DSP56300 core leaves Debug mode.
So(f)t\(/:v(?urrer;it;ug SWOo =1 Debug mode is entered because the execution of the DEBUG
or DEBUGcc instruction with condition is true.
1 IME =0 Interrupt mode is disabled.
Interrupt Mode Enable IME=1 Interrupt mode is enabled.
0 TME =0 Trace mode is disabled.
Trace Mode Enable TME=1 Trace mode is enabled.

Programming the DSP56300 OnCE and JTAG Ports

OnCE Memory Breakpoint Logic

2.2 OnCE Memory Breakpoint Logic

The breakpoint logic contains a latch for addresses of registers that store the upper and lower address
limits, address comparators, and a breakpoint counter.

The 24-bit OnCE Breakpoint Control Register (OBCR) defines memory breakpoint events. It enables
breakpoints on P/X/Y access and breakpoints on read or write access. The OBCR, shown in Table 2-4, can
be read or written through the JTAG port.

Table 2-4. OnCE Breakpoint Control Register (OBCR) Bits

Bit Name Description
23-12 Reserved
11-10 BT1=0 BT0O=0 Breakpoint 0 and Breakpoint 1

Breakpoint 0 and 1 Bvent BT1=0 BTO=1 Breakpoint O or Breakpoint 1

Select
BT1=1 BT0=0 Breakpoint 1 after Breakpoint O
BT1=1 BTO =1 Breakpoint 0 after Breakpoint 1
9-8 CCl11=0 | CC10=0 | Breakpointon notequal

Breakpoint 1 Condition ' -11 _ 6 [cc10=1 | Breakpoint on equal

Select
CCl11=1 | CCl0=0 Breakpoint on less than
CCll1=1 | CCl0=1 Breakpoint on greater than
7-6 RW11=0 | RW10=0 | Breakpoint disabled
Breakpoir;telleF({:(taad/Write RW11=0 | RW10=1 | Breakpoint on write access

RW11=1 | RW10=0 | Breakpoint on read access

RW11=1 | RW10=1 | Breakpoint on read or write access
5-4 CC01=0 | CCO0=0 | Breakpointon notequal
Breakpoint O Condition .
CC01=0 | CCco0=1 Breakpoint on equal

Select
CC01=1 | CCcoo=0 Breakpoint on less than
CC0l1=1 | CCo0=1 Breakpoint on greater than
3-2 RW01=0 | RW00 =0 | Breakpoint disabled
Breakpoiréte?ei;ead/Write RW01=0 | RW00 =1 | Breakpoint on write access
RW01=1 | RW00 =0 | Breakpoint onread access
RW01=1 | RW00 =1 | Breakpoint on read or write access
1-0 MBS1=0 | MBSO =0 | Breakpoint on DMA access
Mem:r:é/ ilrg:ll;pc?int 0 MBS1=0 | MBSO =1 | Breakpointon P access

MBS1=1 | MBSO =0 | Breakpoint on X access
MBS1=1 | MBSO=1 | BreakpointonY access

The OnCE Memory Limit Register 0 (OMLRO) stores the memory breakpoint 0 limit. The OnCE Memory
Limit Register 1 (OMLR1) stores the memory breakpoint 1 limit. Both registers are 24-bit and can be read
or written through the JTAG port.

A MOTOROLA Programming the DSP56300 OnCE and JTAG Ports 5

Pipeline Information and the OGDB Register

The 24-bit OnCE Memory Address Latch (OMAL) register latches the PAB, XAB, YAB, or DAB on
every instruction cycle according to the Memory Breakpoint 0 and 1 Select MBS[1-0] bits in the OBCR.
The OnCE Memory Address Comparator 0 (OMACO0) compares the current memory address stored in
OMAL with the OMLRO contents. The OnCE Memory Address Comparator 1 (OMAC1) compares the
current memory address stored in OMAL with the OMLRI1 contents.

The 24-bit OnCE Memory Breakpoint Counter (OMBC) is loaded with a value equal to the number of
times minus one that a memory access event should occur before a memory breakpoint is declared. The
OBCR and the memory limit registers specify the memory access event. The breakpoint counter
decrements on each occurrence of the memory access event. The DSP enters Debug mode when the
counter reaches 0 and a new event occurs. The OMBC can be read or written through the JTAG port.

2.3 OnCE Trace Logic

The OnCE trace logic allows execution of instructions in single or multiple steps. It causes the DSP to
enter Debug mode after one or more instructions execute and to wait for OnCE commands from the debug
serial port.

The 24-bit OnCE Trace Counter (OTC) allows multiple instruction steps to be taken in real time before
Debug mode is entered. It can be read or written through the JTAG port. If NV instructions are to execute
before Debug mode, the OTC should be loaded with N-1.

To enable trace mode, the OTC is loaded with a value, the program counter is set to the start location of the
instruction(s) to be executed in real time, the trace mode that enables the TME bit in the OSCR is set, and
the core exits Debug mode.

When the core exits Debug mode, the counter decrements after each execution of an instruction. All
executed instructions, including fast interrupt services and repeated instructions, cause the OTC to
decrement. When the OTC reaches 0, the core reenters Debug mode, the trace occurrence TO bit in the
OSCR is set, the core status bits OS[1-0] in the OSCR are set, and the DE signal is asserted to indicate the
core has entered Debug mode and is requesting service.

2.4 Pipeline Information and the OGDB Register

The OnCE program data bus PDB Register (OPDBR) is a 24-bit latch that stores the value of the PDB
generated by the last program memory access of the core before Debug mode is entered. It can be read or
written through the JTAG port. This register is affected by the operations performed during Debug mode
and must be restored by the external command controller upon return to Normal mode.

The OnCE Program Instruction Latch Register (OPILR) is a 24-bit latch that stores the value of the
instruction latch before Debug mode is entered. It can be read only through the JTAG port. The host
computer should immediately save this register when the Debug mode of operation is entered, so the exact
state of the program controller pipeline can be restored upon return to User mode.

The OnCE GDB Register (OGDBR) is a 24-bit latch that can be read only through the JTAG port. The
OGDBR s not actually required for restoring pipeline status, but is required for passing information
between the DSP and the external command controller. This register is mapped to the X internal 1/O space
address SFFFFFC. When the external command controller needs the contents of a register or memory
location, it forces the DSP to execute an instruction that brings that information to the OGDBR. The
contents of the OGDBR are then delivered serially to the external command converter by the command
READ GDB REGISTER.

6 Programming the DSP56300 OnCE and JTAG Ports A moTOROLA

OnCE Trace Buffer

2.5 OnCE Trace Buffer

Three 24-bit program address bus (PAB) registers provide pipeline information when Debug mode is
entered. A trace buffer stores the address of the last-executed instruction and the address of the last 12
change-of-flow instructions:

* The OnCE PAB Register for Fetch (OPABFR) stores the address of the last instruction whose
fetch was started before Debug mode was entered. It can be read only through the JTAG port.

* The OnCE PAB Register for Decode (OPABDR) stores the address of the instruction currently in
the program data bus. The fetch for this instruction was completed before the DSP entered Debug
mode. It can be read only through the JTAG port.

* The OnCE PAB Register for Execute (OPABEX) stores the address of the instruction currently in
the instruction latch. This instruction would have been decoded and executed if the DSP had not
entered Debug mode. The OPABEX register can be read only through the JTAG port.

The circular trace buffer contains 25-bit registers and a 4-bit counter. Although all 12 of the trace buffer
registers have the same address, any read access to the trace buffer address increments the counter, thus
pointing to the next trace buffer register.

When the DSP enters Debug mode, the trace buffer counter points to the trace buffer register containing
the address of the last executed instructions. The first trace buffer read obtains the oldest address, and the
following trace buffer reads obtain the other addresses from the oldest to newest, in order of execution.

A complete set of 12 reads of the trace buffer must be performed, since each read increments the trace
buffer pointer, thus pointing to the next location. After 12 reads, the pointer indicates the same location as
it did before the read procedure started.

3 JTAG Port

The Joint Test Action Group (JTAG) port is a user-accessible test access port (TAP) that provides a way to
enter Debug mode and access the OnCE controller. Figure 3-1 shows the TAP block diagram.

A MOTOROLA Programming the DSP56300 OnCE and JTAG Ports 7

TAP Controller

Boundary Scan Register

i

Bypass Register

A -
DI E > ID Register -
i -
OnCE Logic
Decoder

WYY

4-Bit Instruction Register

. |

TCK— |

TAP Controller

TRST—‘é»

Figure 3-1. TAP Block Diagram

3.1 TAP Controller

TDO

The JTAG port consists of a TAP controller state machine that controls the operation of the JTAG logic
(see Figure 3-2). The value on the TMS signal changes the TAP controller’s state on the rising edge of the

TCK signal.

There are two paths to the TAP controller state machine. The first path consists of Select DR Scan,
Capture_ DR, Shift DR, Exit DR, and Update DR states, which capture and load data into the test data
register. For example, reading the pipeline registers requires the use of this sequence. The second path
consists of Select IR Scan, Capture IR, Shift IR, Exit IR, and Update IR states, which capture and load
instructions into the instruction register. For example, shifting in the JTAG ENABLE ONCE instruction

requires the use of this sequence.

8 Programming the DSP56300 OnCE and JTAG Ports

TMS=1

Test-Logic-Reset

TAP Controller

Run-Test/Idle

TMS=1

Select-DR-Scan

TMS=0

Capture-DR

T™MS=0" rus=o

Shift-DR

TMS=1

Exitl-DR

TMS=0
TMS=0

TMS=1

Exit2-DR

TMS=1

Update-DR

Select-IR-Scan

TMS=0

Capture-IR

TMS=0

Shift-IR

TMS=1

Exitl-IR

TMS=0

TMS=1

Exit2-IR

TMS=1

Figure 3-2. TAP Controller State Machine

Programming the DSP56300 OnCE and JTAG Ports

TMS=0

TMS=0

TMS=0

JTAG Instruction Register

3.2 Signals

The JTAG port has five signals: TCK, TMS, TDI, TDO, and TRST. The OnCE port has one signal, DE,
for use by the OnCE module. Table 3-1 describes the OnCE/JTAG signals.

Table 3-1. OnCE/JTAG Signals

Signal Description
DE | Debug Event « Bidirectional.
« Asinput, allows an external command converter to initiate Debug
mode.

« As output, acknowledges to an external command converter that
the chip has entered Debug mode.

TCK | Test Clock * Input.
« Synchronizes the test logic.

TMS | Test Mode Select | « Input.
e Sequences the state machine of the test controller.
e Sampled on the rising edge of TCK.

TDI | Test Data Input ¢ Input.
¢ Receives serial test instructions and data.
¢ Sampled on the rising edge of TCK.

TDO | Test Data Output ¢ Output.
¢ Sends test instructions and data.
e Changes on the falling edge of TCK.

TRST | Test Reset e Input.
* Initializes the test controller.

3.3 JTAG Instruction Register

10

The DSP56300 core includes a 4-bit instruction register consisting of a shift register with four parallel
outputs. Data transfers from the shift register to the parallel outputs during the Update-IR controller state.
The four bits decode the eight unique instructions shown in Table 3-2. The parallel inputs to the
instruction shift register are loaded with 01 in the least significant bits, as required by the IEEE 1149.1
standard. The two most significant bits are loaded with the values of the core status bits OS[1-0] from the
OSCR. Table 3-3 shows the possible values of the parallel inputs to the instruction register.

Table 3-2. JTAG Instructions

B3 B2 Bl BO INSTRUCTION

0 0 0 0 EXTEST e Selects the boundary scan register.

» Asserts internal reset for the core
system logic to force a predictable
internal state during external boundary
scan operations.

0 0 0 1 SAMPLE/PRELOAD| « Makes a snapshot of system data and
control signals.

« Initializes the boundary scan register
output cells prior to selection of
EXTEST, which ensures that known
data appears on the outputs when the
EXTEST instruction is entered.

Programming the DSP56300 OnCE and JTAG Ports A moTOROLA

Table 3-2.

JTAG ID Register

JTAG Instructions (Continued)

B3

B2 Bl

BO

INSTRUCTION

IDCODE * Selects the identification register that
allows the manufacturer, part number,
and component version to be
determined through the test access

port.

CLAMP e Allows guarding values to be applied
using the boundary scan register of the
appropriate ICs while selecting their

bypass registers.

HI-Z « Disables all output drivers.

ENABLE_ONCE | ¢« Allows the user to perform system

debug functions.

DEBUG_REQUEST| « Allows the user to generate a debug

request signal to the DSP56300 core.

BYPASS ¢ Selects the 1-bit BYPASS register,
which enhances efficiency when the
device under test is not a DSP56300

core-based device.

Table 3-3. Parallel Inputs to the Instruction Shift Register

VALUE STATUS
0001 User mode
0101 External Access/Bus Wait mode
1001 Step mode
1101 Debug mode

3.4 JTAG ID Register

The IDCODE instruction selects the 32-bit JTAG ID Register to allow the manufacturer, part number, and
component version to be determined through the TAP. Figure 3-3 shows the ID Register configuration

31 28 27 22 21 17,16 12 11 10
Version | Manufacturer's Sequence Number Manufacturer IEEE 1149.1
Number Use Identity Requirement
Design Core Chip
Center Number Derivative
nnnn 000110 00000 nnnnn 000000011101
Figure 3-3. Identification Register Configuration
M MOTOROLA Programming the DSP56300 OnCE and JTAG Ports 11

JTAG Boundary Scan Register
3.5 JTAG Boundary Scan Register

The JTAG Boundary Scan Register (BSR) contains bits for all device signals, clock signals, and
associated control signals. All bidirectional signals have a single register bit in the BSR for signal data and
are controlled by an associated control bit in the BSR.

4 Serial Protocol

Before the DSP starts any debugging activity, the external command controller must wait for
acknowledgment on DE or it must poll the OS[1-0] bits in the JTAG instruction shift register. It
communicates with the DSP by sending 8-bit commands that can be followed by 24 bits of data. Both
command and data are sent least significant bit (LSB) first. An external command controller can send a
new command only after DSP has acknowledges execution of the previous command.

Figure 4-1 shows the relative timing of a write command and Figure 4-2 shows the relative timing of a
read command.

TCK

TDI
/< Command >\ /< Command Converter Data >\
DE U

Figure 4-1. Write Command Timing

TCK

TDI
Command
TDO
OnCE Data
DE U

Figure 4-2. Read Command Timing

12 Programming the DSP56300 OnCE and JTAG Ports A moTOROLA

Entering the Test-Logic-Reset State

D Examples of ONCE/JTAG Interaction

This section contains several OnCE/JITAG software routine examples based on the following system setup:
* DSP56300 device for receiving OnCE/JTAG signals (EVM 1)
* DSP56300 device for transmitting OnCE/JTAG signals (EVM 2)
* PC with Motorola DSP56300 tools
* Logic analyzer
The OnCE/JITAG emulation software is downloaded from the PC to the EVM 2 DSP via the OnCE port.

EVM 2 acts as an external command controller, controlling the OnCE/JTAG signals of EVM 1. The logic
analyzer examines relative signal timing. Figure 5-1 shows the relationship among these components.

EVM 1 EVM 2
Target DSP Command Controller

RESET |- GPIO

TRST |- GPIO

TCK e} GPIO

™S |- GPIO

TDI e} GPIO

TDO - GPIO

DE | P GPIO

ONCE/NJTAG

Yyvyvy

Logic Analyzer PC with DSP56300 Tools

Figure 5-1. System Setup

5.1 Entering the Test-Logic-Reset State

To keep JTAG test logic transparent to system logic, the TAP controller must be forced into the
test-logic-reset controller state, which requires:

* Asserting TRST externally during power-up

» Sampling TMS as a logical 1 for five consecutive TCK rising edges after power-up completes.

Once the test-logic-reset state is entered, the run-test/idle state can be entered by calling the subroutine
JTAG RTI, as Example 1 shows.

Example 1. JTAG Run-Text/ldle Mode Sequence

org X:
JTAG RTI _SEQ

dc $30 ; go to next state
dc $30 ; go to next state
dc $30 ; go to next state
dc $30 ; go to next state

A moTOROLA Programming the DSP56300 OnCE and JTAG Ports 13

Entering the Test-Logic-Reset State

14

dc $30 ; go to next state
dc $10 ; go to Run-Test-ldle
dc $00 ; EXIT
org p:
mai n:
jsr JTAG RTI
JTAG RTI :
nove #JTAG RTI _SEQ rO0

jsr

JTAG_EXECUTE

rts

The JTAG_RTI subroutine sends a sequence of 8-bit data to the JTAG_EXECUTE subroutine. Table 5-1
lists the JTAG_RTI subroutine bit definitions.

Table 5-1. JTAG_RTI Subroutine Bit Definitions

7-6 5 4 3 2 1-0
TMS to send TDI to send Read TDO

Reserved Reserved Reserved

For example, a value of $30 indicates that TMS = 1, TDI = 1 are sent on the rising edge of TCK and TDO
is not read on the falling edge of TCK. Thus, JTAG RTI sends a value $30 five times to enter the
test-reset-logic state and then sends a value of $10 (TMS = 0, TDI =1, TDO is not read) to enter the
run-test/idle state.

The JTAG_EXECUTE subroutine shown in Example 2 emulates OnCE/JTAG operation. The
JTAG_EXECUTE routine is repeated until an exit value of $00 is encountered. For example, when the
JTAG_RTI sends an 8-bit data, the JTAG_EXECUTE first determines if bit 2 is set to indicate that TDO
needs to be read. Next, the JTAG _EXECUTE subroutine determines the value of bit 5, then sets or clears
the TMS value accordingly. Next, the subroutine determines the value of bit 4 and sets or clears the TDI

value accordingly. The TCK signal is then toggled to send the values on the JTAG signals.

Example 2. JTAG_EXECUTE Subroutine

JTAG_EXECUTE:

nove x:(r0)+, al

tst a

beq done

nove al, x: JTAG_CVD

brclr #DATA RD, x: JTAG_CMVD, no_r ead
read_TDO

brclr #TDO BI T, x: M_PDRD, TDO_CLR
TDO_SET

nove #>1, a

bra no_read
TDO_CLR

nove #>0, a
no_read

brclr #DATA_TMS, x: JTAG_CVD, TMS_CLR
TMS_SET

bset #TM5_BI T, x: M_PDRD

bra >cont 1
TM5_CLR

belr #TVS_BI T, x: M_PDRD
contl

brclr #DATA TDI, x: JTAG CVD, TDI _CLR
TDI _SET

bset #TDI _BI T, x: M_PDRD

bra >cont 2
TDI _CLR

bclr #TDl _BI T, x: M_PDRD
cont 2

bset #TCK_BI T, x: M_PDRD

rep #3

Programming the DSP56300 OnCE and JTAG Ports

nop

belr #TCK_BI T, x: M_PDRD
bra >JTAG_EXECUTE

done
rts

Executing the JTAG ENABLE_ONCE Instruction

5.2 Executing the JTAG DEBUG_REQUEST Instruction

Once the TAP controller is in the run-test/idle state, the JTAG DEBUG_REQUEST instruction can be
executed to assert an internal debug request signal. As Table 3-2 on page 10 shows, to send the
DEBUG REQUEST instruction, the JTAG Instruction Register requires a value of 0111. Note that the
most significant bit of the JTAG Instruction Register is sent first. Example 3 shows the JTAG
DEBUG_REQUEST sequence.

Example 3. JTAG DEBUG_REQUEST Sequence

org X:
JTAG DR _SEQ
dc

$30 ; go

dc $30 ; go
dc $10 ; go
dc $10 ;9o
dc $14 ; go
dc $14 ; go
dc $14 ;9o
dc $24 ; go
dc $30 ; go
dc $10 ; go
dc $00 ;o EXI
org p:

mai n:
jsr JTAG DR

JTAG DR:

move #JTAG DR SEQ r0
jsr JTAG_EXECUTE

rts

Sel ect DR
Select IR
Capture IR
Shift IR
Shift IR- 1
Shift IR- 1
Shift IR- 1
Exit IR - 0
Update IR

Run- Test-1dl e

5.3 Executing the JTAG ENABLE_ONCE Instruction

To determine whether the DSP has entered Debug mode, the status of the JTAG Instruction Shift Register
can be polled by shifting in the JTAG ENABLE ONCE instruction and reading the status information that
is shifted out. The JTAG Instruction Register requires a value of 0110 (see Table 3-2 on page 10). At the

same time that the ENABLE ONCE instruction is shifted in, the parallel inputs to the instruction shift
register should have a value of 1101 (see Table 3-3 on page 11) to indicate that the DSP has entered Debug
mode. Example 4 shows the JTAG ENABLE ONCE sequence.

Example 4. JTAG ENABLE_ONCE Instruction

org X:

JTAG_ENBL_ONCE_SEQ
dc $30
dc $30
dc $10
dc $10
dc $04
dc $14
dc $14
dc $24
dc $30
dc $10
dc $00

to
to
to
to
to
to
to
to
to
to
T

Sel ect DR
Select IR
Capture IR
Shift IR

Shift IR -
Shift IR -
Shift IR -
Exit IR

Update IR
Run- Test-1dl e

Orro

A MoTOROLA Programming the DSP56300 OnCE and JTAG Ports

15

Reading the Pipeline Registers

org p:
mai n:

jsr JTAG ENBL_ONCE

JTAG_ENBL_ONCE:
move #JTAG_ENBL_ONCE_SEQ, r 0
jsr JTAG_EXECUTE
rts

Another way to determine whether the DSP has entered Debug mode is to monitor the DE signal. Every
time the DSP acknowledges the execution of an instruction in Debug mode, it generates a pulse.

5.4 Reading the Pipeline Registers

16

After the JTAG instructions DEBUG _REQUEST and ENABLE ONCE complete, and after the core
status has been polled to verify that the DSP is in Debug mode, the pipeline must be saved before
debugging starts.

As Example 5 shows, reading the pipeline registers requires the following steps:

1. Send the 8-bit command $8B to read the OPILR, no GO, no EXIT and read the 24-bit data.
2. Send the 8-bit command $8A to read the OPDBR, no GO, no EXIT and read the 24-bit data.

Example 5. Pipeline Register Read Sequence

org X:
JTAG Pl PELN_RD_SEQ
dc $30 ; go to Select DR
dc $10 ; go to Capture DR
; command: $8B
dc $10 ; go to Shift DR
dc $14 ; goto Shift DR- 1
dc $14 ; goto Shift DR- 1
dc $04 ; go to Shift DR- 0
dc $14 ; goto Shift DR- 1
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $14 ; goto Shift DR- 1
;read data
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
;read data
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
;read data
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $24 ; goto Exit DR - O
dc $30 ; go to Update DR
dc $30 ; go to Select DR

Programming the DSP56300 OnCE and JTAG Ports A moTOROLA

Reading the Trace Buffer

dc $10 ; go to Capture DR
; command: $8A
dc $10 ; go to Shift DR
dc $04 ; goto Shift DR- O
dc $14 ; goto Shift DR- 1
dc $04 ; goto Shift DR- O
dc $14 ; goto Shift DR- 1
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $14 ; goto Shift DR- 1
;read data
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
;read data
dc $04 ; goto Shift DR- 0O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- 0O
dc $04 ; goto Shift DR- O
;read data
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $24 ; goto Exit DR - O
dc $30 ; go to Update DR
dc $10 ; go to Run-Test-ldle
dc $00 ; Exit
org p:
mai n:

jsr JTAG Pl PELN_RD

JTAG_XRAM VR

5.5

move #JTAG_ Pl PELN_RD_SEQ, r 0
jsr JTAG_EXECUTE
rts

Reading the Trace Buffer

Reading the information associated with the trace buffer enables an external program to reconstruct the full
trace of the executed program.

As Example 6 shows, reading the trace buffer requires the following steps:

1.

i

Send the 8-bit command $8F to read the OPABFR, no GO, no EXIT and read the 24-bit data.
Send the 8-bit command $90 to read the OPABDR, no GO, no EXIT and read the 24-bit data.
Send the 8-bit command $91 to read the OPABEX, no GO, no EXIT and read the 24-bit data.

Send the 8-bit command $92 to read the Trace Buffer and Increment Pointer, no GO, no EXIT and read
the 25-bit data.

Repeat the last step for the entire FIFO (12 times).

A moTOROLA Programming the DSP56300 OnCE and JTAG Ports 17

Reading the Trace Buffer

Example 6. Trace Buffer Read Sequence

org X:
JTAG TRBUFF_RD SEQ

dc $30 ; go to Select DR
dc $10 ; go to Capture DR
;command: $8F
dc $10 ; go to Shift DR
dc $14 ; goto Shift DR- 1
dc $14 ; goto Shift DR- 1
dc $14 ; goto Shift DR- 1
dc $14 ; goto Shift DR- 1
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $14 ; goto Shift DR- 1
;read data
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
;read data
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
;read data
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $24 ; goto Exit DR - 0
dc $30 ; go to Update DR
dc $30 ; go to Select DR
dc $10 ; go to Capture DR
; conmand: $90
dc $10 ; go to Shift DR
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- O
dc $04 ; goto Shift DR- O
dc $14 ; goto Shift DR- 1
dc $04 ; go to Shift DR- O
dc $04 ; goto Shift DR- O
dc $14 ; goto Shift DR- 1
;read data
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
;read data
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- O
dc $04 ; go to Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- O
;read data
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- O
dc $04 ; go to Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- O

18 Programming the DSP56300 OnCE and JTAG Ports

$04
$04
$24

$30
$30
$10

$10
$14
$04
$04
$04
$14
$04
$04
$14

$04
$04
$04
$04
$04
$04
$04
$04

$04
$04
$04
$04
$04
$04
$04
$04

$04
$04
$04
$04
$04
$04
$04
$24

$30

$30
$10

$10
$04
$14
$04
$04
$14
$04
$04
$14

$04
$04
$04
$04
$04
$04
$04
$04

$04
$04
$04
$04
$04
$04
$04
$04

$04

to
to
to

to
to
to

to
to
to
to

to
to
to
to

to
to
to

to
to
to
to

to
to
to

to
to
to
to

to
to
to

to
to
to
to

to

to
to
to
to
to
to
to

to

to
to
to
to
to
to

to

to
to
to
to
to
to

to

to

Update DR
Sel ect DR
Capture DR

Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift

Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift

Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift

Shift
Shift
Shift
Shift
Shift
Shift
Shift

FBIBIIT FIIIIIIT DIIIIBID BIBXIBIET

[elolofolofolole] [elolololofolole] [elolololofolole] POOROOOR

Exit DR

Update DR

Sel ect DR
Capture DR

Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift

Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift

Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift

Shift

9 FPIIVIET FIXIBIBY FIBIBIBII

[eXeole]

Reading the Trace Buffer

command: $91

;read data

;read data

;read data

; REPEAT THI S SEQUENCE 12X

; command: $92

;read data

;read data

;read data

Programming the DSP56300 OnCE and JTAG Ports 19

Writing to Memory

dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $24 ; goto Exit DR - O
dc $30 ; go to Update DR
dc $10 ; go to Run-Test-Idle
dc $00 ; Exit

org p

mai n:
jsr JTAG_TRBUFF_RD

JTAG XRAM WR:
nove #JTAG_TRBUFF_RD SEQ, r0

jsr JTAG_EXECUTE
rts

5.6 Writing to Memory

20

This example shows how to write a value to X memory. The assembly code to perform this write to
memory is:

nove #$cOf fee, x0 ; opcode: $44f 400
; dat a: $cof f ee
nmove x0, x: (r0)+ ; opcode: $448500

As Example 7 shows, writing to memory requires the following steps:

1. Send the 8-bit command $0A to write to the OPDBR, no GO, no EXIT and send the 24-bit opcode
$441400.

2. Send the 8-bit command $4A to write to the OPDBR, GO, no EXIT and send the 24-bit data $cOffee.

3. Send the 8-bit command $4A to write to the OPDBR, GO, no EXIT and send the 24-bit opcode
$448500.

Example 7. Write-to-Memory Sequence

org
JTAG_XRAM WR_SEQ
dc

$30 ; go to Select DR
dc $10 ; go to Capture DR
; command: $0A
dc $10 ; go to Shift DR
dc $04 ; goto Shift DR- O
dc $14 ; goto Shift DR- 1
dc $04 ; goto Shift DR- O
dc $14 ; goto Shift DR- 1
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
;data: $00
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; go to Shift DR- 0
;data: $F4
dc $04 ; go to Shift DR- 0
dc $04 ; go to Shift DR- 0
dc $14 ; goto Shift DR- 1
dc $04 ; go to Shift DR- 0
dc $14 ; goto Shift DR- 1

Programming the DSP56300 OnCE and JTAG Ports A moTOROLA

$14
$14
$14

$04
$04
$14
$04
$04
$04
$14
$24

$30
$30
$10

$10
$04
$14
$04
$14
$04
$04
$14
$04

$04
$14
$14
$14
$04
$14
$14
$14

$14
$14
$14
$14
$14
$14
$14
$14

$04
$04
$04
$04
$04
$04
$14
$34

$30
$30
$10

$10
$04
$14
$04
$14
$04
$04
$14
$04

$04
$04
$04
$04
$04
$04
$04
$04

$14
$04

to
to
to

to
to
to
to
to
to
to
to

to
to
to

to
to
to
to

to
to
to
to

to
to
to

to
to
to
to

to
to
to

to
to
to
to

to
to
to

to
to
to
to

to
to
to

to
to
to
to
to
to
to
to
to

to
to
to
to
to
to
to
to

Shift
Shift
Shift

Shift
Shift
Shift
Shift
Shift
Shift
Shi ft

IBIBI5% B9

Exit DR

Update DR
Sel ect DR
Capture DR

Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift

Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift

Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift

Shift
Shift
Shift
Shift
Shift
Shift
Shift

F3IBIIT FIIIIIIT FIIIIBIT BIBXIBIDT

Exit DR

Update DR
Sel ect DR
Capture DR

Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift

Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift

Shift
Shift

953 BIIVIHID BIIXIBIBT

Writing to Memory

;data: $44

; command: $4A

;data: $EE

;data: $FF

;data: $Q0

; command: $4A

;data: $00

;data: $85

Programming the DSP56300 OnCE and JTAG Ports 21

Reading from Memory

dc $14 ; goto Shift DR- 1
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $14 ; goto Shift DR- 1
;data: $44
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $14 ; goto Shift DR- 1
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $14 ; goto Shift DR- 1
dc $24 ; goto Exit DR - O
dc $30 ; go to Update DR
dc $10 ; go to Run-Test-Ildle
dc $00 ; Exit
org p
mai n:

jsr JTAG XRAM VIR

JTAG_XRAM VR
move #JTAG_XRAM VR _SEQ r 0
jsr JTAG _EXECUTE
rts

5.7 Reading from Memory

22

This example shows how to read a value from P memory. The assembly code to perform this read from
memory is:

novep (rO0)+, x: OGDB ; opcode: $08d87c

As Example 8 shows, reading from memory requires the following steps:

1. Send the 8-bit command $4A to write to the OPDBR, GO, no EXIT and send the 24-bit opcode
$08d87c.

2. Send the 8-bit command $89 to read the OGDBR no GO, no EXIT and read the 24-bit data.

Example 8. Read-from-Memory Sequence

org
JTAG_PRAM RD_SEQ
dc

$30 ; go to Select DR

dc $10 ; go to Capture DR

;command: $4A
dc $10 ; go to Shift DR
dc $04 ; goto Shift DR- O
dc $14 ; go to Shift DR- 1
dc $04 ; go to Shift DR- 0
dc $14 ; goto Shift DR- 1
dc $04 ; go to Shift DR- 0
dc $04 ; go to Shift DR- 0
dc $14 ; goto Shift DR- 1
dc $04 ; go to Shift DR- 0

;data: $7C
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $14 ; goto Shift DR- 1
dc $14 ; goto Shift DR- 1
dc $14 ; go to Shift DR- 1
dc $14 ; goto Shift DR- 1
dc $14 ; goto Shift DR- 1
dc $04 ; go to Shift DR- 0

;data: $D8
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $14 ; goto Shift DR- 1

DR - 1

dc $14 ; go to Shift

Programming the DSP56300 OnCE and JTAG Ports A moTOROLA

Reading from Memory

dc $04 ; goto Shift DR- O
dc $14 ; goto Shift DR- 1
dc $14 ; go to Shift DR- 1
; data: $08
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $14 ; goto Shift DR- 1
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- 0O
dc $04 ; goto Shift DR- O
dc $24 ; goto Exit DR - O
dc $30 ; go to Update DR
dc $30 ; go to Select DR
dc $10 ; go to Capture DR
; command: $89
dc $10 ; go to Shift DR
dc $14 ; goto Shift DR- 1
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $14 ; goto Shift DR- 1
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $14 ; goto Shift DR- 1
;read byte
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
;read byte
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- 0
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
;read byte
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; goto Shift DR- O
dc $04 ; go to Shift DR- O
dc $04 ; goto Shift DR- 0
dc $24 ; goto Exit DR - O
dc $30 ; go to Update DR
dc $10 ; go to Run-Test-ldle
dc $00 ;o Exit
org p
mai n:

jsr JTAG _PRAM RD

JTAG_XRAM VR
nove #JTAG_PRAM RD SEQ r0
jsr JTAG_EXECUTE
rts

| MOTOROLA Programming the DSP56300 OnCE and JTAG Ports 23

OnCE and Mfax are trademarks of Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by customer's technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body, or other applications intended to support life, or for
any other application in which the failure of the Motorola product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or
death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and (%4 are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer. _

How to reach us:

USA/EUROPE
Motorola Literature Distribution

P.O. Box 5405

Denver, Colorado 80217
1-303-675-2140
1-800-441-2447

Customer Focus Center
1-800-521-6274

@ MOTOROLA

JAPAN

Motorola Japan Ltd.

SPS, Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC

Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
852-26668334

Mfax™, Motorola Fax Back System
RMFAXO@email.sps.mot.com
http://sps.motorola.com/mfax/
TOUCHTONE: 1-602-244-6609
USA and Canada ONLY:
1-800-774-1848

Home Page
http://www.mot.com/SPS/DSP/

DSP Helpline
dsphelp@dsp.sps.mot.com

AN1839/D

