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SECTION 1

 

Introduction

 

“The DSP56001
has many

features that
make it possible

to perform
Viterbi decoding

quickly and
efficiently. . .”

    
Coding techniques have long been used for error
correction to decrease the bit error rate (BER) in data
transmission systems. This decrease in BER is ac-
complished by adding redundant data bits to the
transmitted data bits and, in some cases, scrambling
the order of the original data bits. There are many
types of coding techniques (Hamming, BCH, and
Reed-Solomon) used to correct different error phe-
nomena that occur during data transmission (see
Reference 1). This discussion is limited to convolu-
tional encoding, a good method for correcting errors
that occur during data transmission.

Convolutional encoders are implemented in the form of
a shift register type of circuit with particular locations of
the shift register exclusively ORed together to produce
an output. Figure 1-1 shows one such implementation.
The locations that are exclusively ORed together may
be referred to as taps. The placement of these taps de-
fines possible state transitions where the number of
states for a particular code is defined by 2(k-1) (see
Reference 2). In this case, k is the constraint length of
the code and is also the length of the shift register. The
state transitions may also be represented by a trellis di-
agram. The trellis for the encoder of Figure 1-1 is
shown in Figure 1-2 (see Reference 2).
1-1
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Figure 1-1  Convolution
Many data transmission systems use convolutional
encoding when transmitting data; however, some
systems use a method of transmission known as trel-
lis coded modulation (TCM). TCM is a technique in
which modulation and coding are combined (see
Reference 3). One such application is phone-line
channels being used to transmit higher and higher
data rates on a power-limited 3kHz band-limited line.

There are several different methods for decoding
convolutional codes: sequential decoding, threshold
decoding, and Viterbi decoding. Practical applica-
tions of convolutional encoding became possible
when Viterbi proposed a maximum-likelihood meth-
od for decoding convolutional codes in 1967 (see
Reference 4). The Viterbi method is fast enough to
allow real-time decoding for short constraint length
(k) codes with high-speed processors (made possi-
ble by recent advances in VLSI technology). Long

Y1 First Code Bit

Y2 Second Code Bit

Output Symbol Y1, Y2S1

al Encoder Shift Register Implementation
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constraint length codes require so much path mem-
ory that it is not practical to use the Viterbi algorithm
when decoding. This maximum-likelihood method
is equivalent to a dynamic programming solution to
the problem of finding the shortest path through a
trellis (see Reference 1).

The Motorola digital signal processor (DSP56001)
has the perfect architecture for communication
channel modulators and demodulators. For exam-
ple, the complexity of these components for high
data rate modems has forced designers to find a
digital signal processing chip solution to what once
was an analog problem. In terms of design simplici-
ty, the possibility of performing error correction and
modem functions on the same chip has become
very important. The DSP56001 has many features
that make it possible to perform Viterbi decoding
quickly and efficiently, allowing not only a single-
chip solution to the high-speed modem application
but also a single-chip solution for a higher speed Vit-
erbi decoder. The dual memory architecture allows
parallel moves concurrent with arithmetic operation,
and the instruction set provides flexibility to easily
program using this capability (see Reference 5).
This feature of the DSP56001 is fully exploited in the
included code.

Because the Viterbi algorithm is a dynamic pro-
gramming model, a trellis has been chosen as the
example for the report. Using this trellis, each step
in designing the code is explained, giving enough
MOTOROLA 1-3
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Figure 1-2  Trellis Rep
description to duplicate or modify the existing code
for a different trellis. This application note specifical-
ly addresses the trellis for the CCITT V.32 modem
standard, which uses TCM consisting of quadrature
amplitude modulation (QAM) combined with a dif-
ferential and convolutional encoder (see Reference
3). The techniques described can be applied to any
trellis, and the included DSP56001 code can be
modified to work with any trellis, not only the V.32. 
■
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SECTION 2

 

Trellis (Convolutional) 
Encoding

 

“The input to the
encoder is the

parallel data
stream Q1

 

n

 

, Q2

 

n

 

,
Q3

 

n

 

, and Q4

 

n

 

.”

         
2.1  Theory

A convolutional encoder is a function of the number
of input bits (N) for the number of output bits (M) and
the constraint length (K). N,M,K and the given gener-
ator function can completely describe a convolutional
encoder. The generator function of the encoder is the
impulse response of the encoder—that is, the output
of the encoder when the input sequence is a one fol-
lowed by zeros. Thus, the encoder equation can then
be expressed as:

v = u * g Eqn. 2-1

where: * = convolution operation 
v = output
u = input 
g = generator polynomial (see Reference 1).

As shown, a convolutional encoder adds redundant
bits to a signal data stream. Adding more bits gener-
ally increases the bit error rate (BER) since there are
more encoder output bits per input bits to transmit
2-1
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CodingGain 10=
with the same average power. When this happens,
a reduction in the signal-to-noise ratio (SNR) occurs
since there is less signal power per bit and, there-
fore, an increase in the BER. However, when a
convolutional encoder adds a redundant bit to a
data stream, it is done in such a way that the SNR
is increased by allowing only certain transitions to
occur. The coding gain associated with convolution-
al encoding is given by:

Eqn. 2-2

where: d2
min = the minimum distance between 

possible transitions 

Pav = the average power of the signal 
for the encoded and unencoded 
cases, respectively 
(see Reference 6).

The minimum distance must now be examined.
Figure 2-1 shows a 16QAM signal constellation,
where four bits are required to represent one point
on the constellation (see Reference 7). Figure 2-2
shows a 32 QAM constellation where five bits rep-
resent one point on the constellation (see
Reference 7). For the 16QAM case, the minimum
distance from one point to the next is 2. 

log10 dmin
2

Pav⁄ 
  encoded dmin

2
Pav⁄ 

  unencoded
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For the 32QAM case in which the extra bit is a re-
dundant bit obtained from a convolutional encoder
so that the actual data rate is the same as the
16QAM case, the points are located such that the
minimum distance is now . Note that transi-
tions between nearest neighbors on an encoded
constellation are not allowed in contrast to those
on an unencoded constellation. This is how a larg-
er d2

min and, consequently, coding gain is realized
with convolutional encoding. Substituting these
values into Eqn. 2-2 results in a coding gain of ap-
proximately 4dB. For the 32QAM case using TCM,
this would result in a decrease in the BER over the
unencoded 16QAM case for the same average
signal power.

Figure 2-1  16QAM Constellation
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Figure 2-2  32QAM Co
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Figure 2-3 shows the nonlinear convolutional and
differential encoder for the V.32 standard (see
Reference 7). The input to the encoder is the par-
allel data stream Q1n, Q2n, Q3n, and Q4n. The first
function performed is differential encoding (see
Table 2-1), which provides 90 degrees of phase in-
variance (see Reference 6). This means that Q3n
and Q4n are the same for points on the 32QAM
constellation that are 90 degrees from each other.
The convolutional encoder has eight states result-
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Mapping
ing from the three delays: S1, S2, and S3. State 1
(S1) is the rightmost state, with state 2 (S2) and
state 3 (S3) to the left, respectively. The output of
the encoder is Y0n, Y1n, Y2n, Q3n, and Q4n where
Y0n, Y1n, Y2n are now considered a path when re-
ferring to the trellis. The trellis for the convolutional
encoder is shown in Figure 2-4 (see Reference 8).
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Figure 2-3  V.32 Encoding Diagram
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Table 2-1: 
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Figure 2-4  V.32 Trellis Diagram
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2.2 Implementation

 

Implementing the encoder of Figure 2-3 on the
DSP56001 is relatively simple. The differential
encoder is implemented by storing the previous
outputs of the differential encoder and then per-
forming the appropriate exclusive OR (V) and AND
(

 

Λ

 

) functions defined by:

 

Eqn. 2-1

Eqn. 2-2

 

The convolutional encoder is implemented in much
the same way. There are three delays (S1, S2, and
S3); each requiring separate memory locations.
The information from each delay is used at each in-
put and then updated, based on the configuration
of Figure 2-3. The output (Y0

 

n

 

) at each time period
is the value of delay 1 (S1) before it is updated.
Figure 2-5 shows a flowchart of the encoding pro-
cess. S1, S2, and S3 are referred to as the delay
state of the encoder and the decoder; Y0

 

n

 

, Y1

 

n

 

,
Y2

 

n

 

 are referred to as the path state of the encoder
and the decoder.

 

■

Y1n = Q1n V Y1n-1

Y2n = (Q1n Λ Y1n-1) V Y2n-1 V
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Viterbi Decoding

 

“Decoding must
be done by

performing each
decoder

function in the
reverse order in

which it was
encoded.”
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3.1 Theory
The Viterbi algorithm for decoding uses the structure
of the trellis (i.e., the allowed transitions) and the input
data to determine the most likely path through the trel-
lis. The output for time (t0) reflects a decision made by
the decoder on data received up to N time periods in
the future. This means that the output for time (t0) is
necessarily delayed by N time periods or that the la-
tency of the decoder is N time periods. N is
determined by the constraint length of the code and,
for near-optimum decoding, is four or five times the
constraint length (see Reference 9).

The most likely path through the trellis is one that is a
minimum-distance path for the input data or the path
closest to the received data in Euclidean distance. In
other words, the Viterbi algorithm minimizes the dis-
tance (see Reference 1):

 Eqn. 3-1

where: ri and vi are the received and the decoded 
signal sequence, respectively

d r,v( ) d ri vi,( )
i 0=

N 1–

∑=
3-1



 

3-2
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At each time period, every delay state in the trellis
can have several paths (defined by each trellis) go-
ing into it, but only one will be the minimum distance
for that delay state. Thus, the beginning point at
each time period is the delay state with the smallest
accumulated distance to trace the minimum-dis-
tance path through the past N-1 time periods of the
trellis. Next, the algorithm determines the minimum-
distance paths to the next delay state by evaluating
the input to determine which point on the constella-
tion in each path is closest; determining the
Euclidean distance to each of those points; and
then, based on the trellis structure and the mini-
mum-distance paths, determining the minimum
distance to each delay state. After defining the trel-
lis, the steps taken to decode the data are as
follows (see Reference 1):

1. Compute the minimum-distance path states
at each input and the corresponding
Euclidean distances and store them for each
path state.

2. Compute the accumulated distance to each
delay state by adding the distance for each
path state going into a delay state to the
distance of the delay state where the path
state originated, keeping the smallest of
these distances and storing the path state
and the delay state from which it came.
Eliminate all other path states going into that
delay state.

3. Find the delay state with the smallest
accumulated distance and trace it back N
times to read the path state, which is the
output of the decoder for that time period.
MOTOROLA
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Figure 3-1 shows the possible paths to delay state
010 for the V.32 trellis and how the minimum dis-
tance to 010 is chosen from the possible paths.

When the minimum-distance path is found at each
delay state, the path state taken to get there from
the last delay state must also be stored (i.e., 001 in
Figure 3-1 assuming C+  was the minimum) so
that, in N time periods, the output can be deter-
mined from the endpoint of the minimum-distance
path at time t0 + N. The most likely path can be
traced by storing the minimum-distance path state
(Y0n, Y1n, Y2n) to each delay state as well as the
path originating the delay state (S1, S2, S3). 
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 Figure 3-1 Possible Paths to State 010
These paths are calculated and used to dete
 minimum-distance path. 
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This tracing is done by starting at the minimum ac-
cumulated distance delay state, back-tracking to the
delay state it came from, and repeating this process
N-1 times. That is, the minimum accumulated dis-
tance for all eight states identifies the state to be
used as the starting point from which to trace back
N time periods.

Once the state for t0 is found, the path taken to get
to that state becomes the output of the decoder for
the time period t0. For instance, in Figure 3-1, if at
t0, the end point of the minimum-distance path was
010, then the output of the Viterbi decoder would be
001 if C + γ was the minimum-distance path.

At every time period, the accumulated distance to
each delay state is calculated and updated, and
the minimum-distance path state (Y0n, Y1n, Y2n)
to each delay state is stored as well as the delay
state it came from (S1, S2, S3). Storing this data
creates a history, making it possible to trace back
to get the correct output of the decoder.

A block diagram of the V.32 decoder showing
inputs and outputs is illustrated in Figure 3-2. It can
be compared to the block diagram of the encoder
shown in Figure 2-3 to keep track of the input and
output bit order. Decoding must be done by perform-
ing each decoder function in the reverse order in
which it was encoded. In this case, the trellis decod-
ing is performed before the differential decoding.
MOTOROLA
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3.2 Implementation
Implementing the Viterbi decoder on the
DSP56001 involves:

1. Segregating memory locations properly

2. Recognizing boundary conditions of the
trellis

3. Utilizing the modulo addressing capability of
the DSP56001

First, a brief description of the functions for the
decoder must be analyzed to realize the impor-
tance of the three previously mentioned ideas. At
initialization, the x and y components of the points
on the constellation are stored in memory for dis-
tance computations. For every input, the Euclidean
distance to the closest point in each path state is
computed. 

After computing this distance, the minimum accu-
mulated distance to each delay state can be com-
puted. Then, the minimum-distance delay state is

Viterbi

Decoder Differential 

Decoder

Y2

Y1

I

Q

 Figure 3-2 V.32 Decoder Block Diagram
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used as the starting point to trace back to find the
output of the previous 16 time periods. Recall that
the number of time periods needed should be four
or five times the constraint length (in this case,
K=4). Since four times the constraint length in this
case is 16(4 x K), this makes modulo addressing
easier than using 20(5 x K) because 16 is a power
of two. Once the output delay state is found, the
closest point in the path state to the original input
at that time period is computed and is the output of
the decoding process. Figure 3-3 shows the
decoder flowchart. Each of these functions is dis-
cussed separately in the following sections. The
decoder code is included in APPENDIX B
DSP56001 Decoding Program Listing.

3.2.1 Initialization

During initialization, the x and y components of the
constellation points are stored in internal memory
since they are accessed frequently. The modulo
settings for other parts of the code are also set here.
All distance tables must be initialized as well. Since
all paths should begin at the 000 delay state, this
accumulated distance location should contain the
value zero, assuming that the initial conditions of
the delays in the encoder are 000. In practical im-
plementation, it is important to assume that the path
started from state 000. Setting all other accumulat-
ed distances to a large value will ensure that the
path starts at 000. Figure 3-4 shows a memory map
for the decoder.
MOTOROLA
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 Figure 3-3 Decoder Flowchart
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3.2.2 Finding the Minimum Distance

This routine analyzes the input data point and de-
termines the Euclidean distance to the closest point
in each of the eight path states. The Euclidean dis-
tance is defined to be:

 Eqn. 3-2

where: xc and yc are the x and y coordinates of 
the point on the constellation and 

xi and yi are the coordinates of the input 
data. 

emory Map used by the DSP56001 program listing 
 B
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ut for
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This calculation can be done by computing the Euclid-
ean distance to each point in each path state and only
keeping the smallest computed distance for that path
state; however, there is a more efficient way to calcu-
late this distance (see Reference 8). Looking at Figure
3-5 for the location of points for path state (Y0n, Y1n,
Y2n) 110, the boundaries that equally separate the
four points are shown as dashed lines. 

Figure 3-5 shows which point for this path state is
closest to the input using these boundaries. Super-
imposing the boundaries for all eight path states
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 Figure 3-5 Boundary for State 010
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creates the boundaries shown in Figure 3-6. There
are 52 bounded areas on the constellation. For ev-
ery bonded area, there is a unique set of eight
points corresponding to the closest point for every
path state should the input fall in the bounded area.
For example, assuming that the input fell into region
6 in Figure 3-6, then the eight closest points would
be 00010, 00101, 01010, 01101, 10011, 10101,
11000, and 11111.

Once the bounded area of the input is determined,
then the smallest Euclidean distance for every path
is just the Euclidean distance to that point for each
path state determined by the boundary condition,
which reduces the execution time considerably.

 These distances are then stored for use in the next
part of the code. The detailed discussion for their
storage order is presented in SECTION 3.2.3 Find-
ing the Accumulated Distance to Each State.
The eight points for each of the 52 bounded areas
are loaded into memory at the beginning of the de-
coding process by loading the bound.d file (see
APPENDIX C DSP56001 Bound.D Data File).
Since there are eight path states in each of the 52
areas, this requires 416 words of data memory. The
larger memory is not needed if the much slower di-
rect approach is used — namely, finding the
distance to all 32 points in the constellation. A deci-
sion must be made to optimize either speed or
memory usage. The included code uses the fast
version, which requires more memory.
MOTOROLA
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3.2.3 Finding the Accumulated 
Distance to Each State

Close analysis of the V.32 trellis in Figure 2-4 reveals
that there are a limited number of path states (four)
to each new delay state from the previous time peri-
od. Table 3-1 identifies the combination of previous
delay states and path states to reach each delay
state for the current time period. If this table is viewed
as memory, it shows that, by arranging the data as il-
lustrated, the code needed to update the appropriate
delay state can be minimized. Even delay states are

90˚

270˚

180˚

(Imaginary)

Bit sequence = Y0n, Y1n, Y2n, Q3n, Q4n

00000

4

-4

00

00

11011

11101

00111

11100

11001-4 11110

10101

-2

2

 Figure 3-6 Superimposed Boundaries for All States

10011

11000

01101

11111

11010

01001

10111 10001

0110001110

01000 0101000101

00010

-2 2

01011

10110

10010

00001

10000

00110

10100

01111
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New State
S1, S2, S3

Old State
S1, S2, S3

000 000

000 001

000 010

000 011

010 000

010 001

010 010

010 011

100 000

100 001

100 010

100 011

110 000

110 001

110 010

110 011
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only reached by the previous delay states 000, 001,
010, 011, and odd delay states are only reached by
the previous delay states 100, 101, 110, and 111. 

Table 3-1  Minimum Path Table

 Path
Y0, Y1, Y2

New State
S1, S2, S3

Old Start
S1, S2, S3

Path
Y0, Y1, Y2

000 001 100 100

010 001 101 111

011 001 110 110

001 001 111 101

010 011 100 111

000 011 101 100

001 011 110 101

011 011 111 110

011 101 100 101

001 101 101 110

000 101 110 111

010 101 111 100

001 111 100 110

011 111 101 101

010 111 110 100

000 111 111 111
MOTOROLA
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Similarly, the path state to each new even delay
state can only be 000, 001, 010, 011, and the path
state for each new odd delay can be only be 100,
101, 110, 111. In the even case, if the path states
are put in the order 000, 010, 011, 001 by incre-
menting in two cases (for states 0 and 4) and
decrementing in two cases (for states 2 and 6), they
are easily stepped through when computing the
minimum accumulated distance to each delay
state. For delay state 2 (010), the pointer is initial-
ized to the second location (path state 010) prior to
decrementing; for delay state 4, the pointer is initial-
ized to the third location (path state 011) prior to
incrementing; and for delay state 6, the pointer is
initialized to the fourth location (path state 001) prior
to decrementing.

In practice, it is impossible to continue to accumu-
late these distances without running into an
overflow problem. Thus, an alternate way to obtain
the accumulated distance measurement is a
weighted accumulation method, which can be ex-
pressed as (see Reference 10):

 Eqn. 3-3

where: 0<<ß<1 denotes the smoothing parameter

This method (essentially a low-pass filter) ensures
that the newly accumulated distance is a bounded
arithmetic value. This method has been shown to be
unbiased estimates (see Reference 10.) Although

dnew βdold 1 β–( )dpath+=
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Eqn. 3-3 uses all past values to compute a current
accumulated distance, the value of β is directly re-
lated to the time constant,τ, which gives the number
of recent past values to estimate the accumulated
distance as:

 Eqn. 3-4

Using this equation, 85% of dnew comes from the
points in the time constant, τ, and the remaining
15% is contributed by points previous to τ. The val-
ue of β = 0.9 was used for this code and simulation;
however, it should be considered a performance
parameter that can be modified for different applica-
tions and performance specifications.

At several points in the code, two paths can have the
same minimum distance. In these situations, an ar-
bitrary choice is made to keep one or the other path.

In the included code, the arbitrary choice has been
made to keep the last path found; however, it could be
changed to pick the first path encountered or the first
path in even cases and the last path in odd cases. The
performance of the included code is not affected by
changing this arbitrary choice (see Reference 1).

Once the minimum distance for each state is accu-
mulated, the path taken to get there and the
previous state are stored in memory to be used
when tracing back through the trellis to determine an
output. Since the memory is 16 time periods deep

τ 2
1 β–
------------≈
MOTOROLA
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and there are eight states, the memory is set up to be
128 words in each memory. The previous state infor-
mation is stored in a circular buffer in x memory, and
the path information is stored in a circular buffer in y
memory. In this manner, the new states and paths will
overwrite the oldest information in the buffer each
time period.

3.2.4 Traceback
Tracing back through 16 time periods along the
most likely path is now done by taking advantage of
the fact that the memory is set up to be circular
around 128 points. Starting at the most current lo-
cation in which the latest paths for each state were
updated as well as the state from which the path
came, the memory is decremented by eight to the
previous time period. When this is done, the pointer
is then updated (a number between zero and sev-
en) to correspond with the previous state from
which the most likely path came. The information
stored at this pointer location is the state informa-
tion for the next time period. This procedure is done
until the last time period in which the path is read,
instead of the state from which it came. This path
determines the output of the decoder.

3.2.5 Data Out
By taking the path found at the end of traceback,
the output of the Viterbi decoder can be deter-
mined. The path corresponds to one of eight paths
MOTOROLA 3-15
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(Y0n, Y1n, Y2n), and the least significant bits corre-
spond to the unencoded bits (Q3n and Q4n). The
closest of the four points from that path to the input
at that time period is the output of the decoder. The
most significant bit (Y0n) is stripped off at this point
(the redundant bit added in the coding process).

3.2.6 Differential Coding
The decoding of the differential encoding is now
performed by taking the two most significant bits of
the Viterbi decoder output to perform the following:

 Eqn. 3-5

 Eqn. 3-6

where: • Y1n and Y2n are the most significant bit of 
the Viterbi decoder output.

• Q1n and Q2n are now combined with the 
two least significant bits of the Viterbi 
output to complete the decoding process.

■

Q1n Y1nVY1n 1–
=

Q2n Q1nΛY1n 1–
( )VY22n 1–

VY2n=
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“Modifying the
code...

to work with any
trellis diagram

should be fairly
straightforward.”

 

T

 

he included decoder code takes approximately
700 instruction cycles for every four input bits. For
the V.32 case, this is about 15% of the processor.
Modifying the code in 

 

APPENDIX A DSP56001
Encoding Program Listing
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 to work with
any trellis diagram should be fairly straightforward.
Modification is accomplished by going through each
step explained; defining the memory, order of stor-
age, and modulo settings for the new trellis. Bound-
ary conditions obviously change, causing a need for
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 to be
redone for any new constellation.

Hopefully, this application note gives enough expla-
nation and description on how to implement a convo-
lutional encoder with a Viterbi decoder on the
DSP56001 for any trellis. Textbooks and fundamen-
tal papers dealing with coding theory are listed in
References 11,12, and 13 for convenience.
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;This is a convolutional encoder for the V.32 which takes it's input from 
;a file and and tests the output for all states as well as well as inputs. 
locate equ $ee

statement equ 60
output equ 50
input equ 40
start equ $40

org p:start
move #statemem,r3
do #104,code
move #input+3,r2
move #locate,r6
move #output,r5
move y:(r6),a
move #>$1,x0
do #4,loop
and x0,a a,x1
move a1,x:(r2)-
move x1,a
asr  a

loop
jsr encode
move #locate+1,r6
move #input,r2
clr b
clr a y:(r4),b0
addl b,a
do #4,loop2
move x:(r2)+,b0
addl b,a

loop2
move a0,y:(r6)

code
encode

move #input,r0
move #output,r4
move #statemem,r1
move x:(r0)+,x1
move x:(r1)+,a
move a,y:(r4)
and x1,a x:(r0),x0
move x:(r1)-,b
eor x0,b a,y0
eor y0,b b,y1 
move b,x:(r1)+y:(r4),b
TOROLA A-1
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and y1,b x0,a
move (r1)+
eor x1,a x:(r1),x0
eor x0,a y:(r4),y1
move   b,y0
eor y0,a y1,x:(r1)-
move a,x:(r1)+
rts

end

Figure A-1  DSP56001 Encoding Program Listing  (sheet 2 of 2)
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DSP56001 Decoding Program Listing
;This program is a Viterbi Decoder for V.32.  There is a 16
;time period delay which will approach the maximum possible 
;gain for this type of encoder.

page 132,66,3,3,0
opt cex
org l:$0000

period dsm  128
location dsm 32
input dsm 16
tables dsm 8
temp dsm 8

endlong equ *
org x:endlong

storr6 ds 1
org x:512

boundry1 ds 32
boundry2 ds 32
boundry3 ds 32
boundry4 ds 32
boundry5 ds 32
boundry6 ds 32
boundry7 ds 32
boundry8 ds 32
boundry9 ds 32
boundry10 ds 32
boundry11 ds 32
boundry12 ds 32
boundry13 ds 32

start equ $40
four    equ $200000
three equ $180000
two equ $100000
one equ $080000
zero equ $000000
mone equ $f80000
mtwo equ $f00000
mthree equ $e80000
mfour equ $e00000

large equ .9
small equ .1
offset equ $010000
OTOROLA B-1

Figure B-1  DSP56001 Decoding Program Listing (sheet 1 of 11)



 

B-

   
org p:start
jsr initialize
do #115,endrun
jsr readdata
jsr findmindist
jsr accumdist
jsr traceback
jsr outputdata

endrun

;this initialization routine initializes register and modifiers
;as well as clearing the memeory.
;the constellation is also loaded into memory here.
;the accumulated distance array is set so that state zero starts out
;at a value of zero and all others start out larger, forcing the paths
;to merge at the zero states.

initialize
move #127,m1
move #127,m5
move #15,m6
move #0,r1
clr b       #$0,r0
clr a r0,r5
do #256,clrmem
move a,x:(r0)+b,y:(r5)+

clr mem
move #tables+1,r7
move #$400000,a1
rep #7
move a1,x:(r7)+

move #input,b1
move b1,x:storr6  

;Now load full scale values of the constellationin the table location.
  

move #location,r0
move r0,r4
move #mfour,a
move #one,b
move a,x:(r0)+b,y:(r4)+
move #zero,a
move #mthree,b
move a,x:(r0)+b,y:(r4)+
move #one,b
move a,x:(r0)+b,y:(r4)+
move  #four,a       
move a,x:(r0)+b,y:(r4)+
move   #mone,b
move a,x:(r0)+b,y:(r4)+
move #zero,a
move #three,b
move a,x:(r0)+b,y:(r4)+ 
2 MOTOROLA
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move #mone,b
move a,x:(r0)+ b,y:(r4)+  
move #mfour,a
move a,x:(r0)+ b,y:(r4)+
move #mtwo,a
move #three,b
move #mone,y1
move a,x:(r0)+ b,y:(r4)+
move a,x:(r0)+ y1,y:(r4)+
move #two,a
move a,x:(r0)+ b,y:(r4)+
move a,x:(r0)+ y1,y:(r4)+
move #one,b
move #mthree,y1
move a,x:(r0)+ y1,y:(r4)+
move a,x:(r0)+ b,y:(r4)+
move #mtwo,a
move a,x:(r0)+ y1,y:(r4)+
move a,x:(r0)+ b,y:(r4)+
move #one,a
move a,x0
move #mthree,a
move #two,b
move b,y0
move #mtwo,b
move a,x:(r0)+ b,y:(r4)+
move x0,x:(r0)+ b,y:(r4)+
move a,x:(r0)+ y0,y:(r4)+
move x0,x:(r0)+ y0,y:(r4)+
move #three,a
move a,x0
move #mone,a
move x0,x:(r0)+ y0,y:(r4)+
move a,x:(r0)+ y0,y:(r4)+
move x0,x:(r0)+ b,y:(r4)+
move a,x:(r0)+ b,y:(r4)+
move #one,a
move #zero,b
move b,y0
move #four,b
move a,x:(r0)+ b,y:(r4)+
move #mthree,x0
move x0,x:(r0)+ y0,y:(r4)+
move a,x:(r0)+ y0,y:(r4)+
move #mfour,b
move a,x:(r0)+ b,y:(r4)+
move #mone,a
move a,x:(r0)+ b,y:(r4)+
move #three,x0
move x0,x:(r0)+ y0,y:(r4)+
move a,x:(r0)+ y0,y:(r4)+ 
move #four,b
move a,x:(r0)+ b,y:(r4)+
rts
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Figure B-1  DSP56001 Decoding Program Listing (sheet 3 of 11)



 

B-4

  

F

 

;readdata reads in the data from a simulator file.  Since it is read in as
;a point on the constellation, it must be converted to real and imaginary
;componenets by indexing into a table.
;it is also offfset by a value "offset" so it is not considered to be perfect
;data.

readdata
move y:$efe,a
move a,n2
move    #location,r2
move x:storr6,r6
lua (r2)+n2,r4
move #>offset,x0
move x:(r4),a
add x0,a y:(r4),b
add x0,b a,x:(r6)
move b,y:(r6)+
move r6,x:storr6
rts

;the minimum distance is found to the closest point in every state and stored.
;the values are stored so that indexing is made easier, state 0,2,3,1,4,7,6,5.
;this will greatly reduce the number of cycles needed later.
;a smoothing function is used to accumulate distances in the accumulated    
;table so this minimum distance is multiplied by .1.

findmindist

move x:-(r6),a
move #one,x0
cmpm x0,a y:(r6),b

;x>1
jgt <bigone
cmpm x0,b #boundry1,r2

;x<1,y<1, load r2 with boundry 1 and continue

jlt <continue
move #two,x1
cmpm x1,b #boundry4,r2

;x<1,y>1andy<2, load r2 with boundry4, go on

jlt <continue
move #boundry6,r2

;x<1,y>2, load r2 with boundry6 and continue

jmp <continue
bigone move #two,x1

cmpm x1,a

;x>2, jmp to that case
jgt <bigtwo
cmpm x0,b #boundry2,r2

;x>1 ans x<2, y<1 load boundry2 and continue
MOTOROLA
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jlt continue
cmpm x1,b #boundry5,r2

;x>1,y<2 load boundry 5 and continue

jlt <continue

bigtwo cmpm x0,b #boundry3,r2

;x>2 and y<1 so load boundry3 and continue

jlt <continue

abs a #two,y0
abs b a,x1
sub y0,a b,y1
sub x0,b
cmpm a,b y1,b
jgt <greatery1
cmp y0,b #boundry7,r2

jlt <continue 
move #boundry12,r2
jmp <continue

greatery1 sub y0,b x1,a
sub x0,a
cmpm a,b x1,a
jgt <greatery2
cmp y0,a #boundry10,r2
jlt <continue
move y1,b
cmp y0,b #boundry11,r2
jlt <continue
move #boundry9,r2
jmp <continue

greatery2 cmp y0,a #boundry8,r2
jlt <continue
move #boundry13,r2

continue clr a x:(r6),x1
cmp x1,a y:(r6),y1
jgt <negx
cmp y1,a #24,n2
jgt <posxnegy

posxposy jmp <findist
posxnegy move x:(r2)+n2,x0 ;update r2 by 24

jmp <findist
negx cmp y1,a #8,n2

jgt <negxnegy
negxposy move x:(r2)+n2,x0 ;update r2 by 8

jmp <findist
negxnegy move x:(r2)+n2,x0 ;update r2 by 16

move x:(r2)+n2,x0
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findist
move x:(r2)+,r0
move #tables,r4
move x:(r0),a
sub x1,a y:(r0),b
sub y1,b a,x0
mpy x0,x0,a b,y0
mac y0,y0,a x:(r2)+,r0
move #small,x0a,y0
mpy x0,y0,a
move x:(r0),a a,y:(r4)+
sub x1,a y:(r0),b
sub y1,b a,x0 y:(r4)+,y0
mpy x0,x0,a b,y0
mac y0,y0,a x:(r2)+,r0
move #small,x0a,y0
mpy x0,y0,a y:(r4)+,b
move x:(r0),a a,y:(r4)-
sub x1,a y:(r0),b
sub y1,b a,x0 y:(r4)-,y0
mpy x0,x0,a b,y0
mac y0,y0,a x:(r2)+,r0
move #small,x0a,y0
mpy x0,y0,a
move x:(r0),a a,y:(r4)+
sub x1,a y:(r0),b
sub y1,b a,x0
mpy x0,x0,a b,y0
mac y0,y0,a x:(r2)+,r0
move #small,x0a,y0
mpy x0,y0,a
move x:(r0),a a,y:(r4)+
sub x1,a y:(r0),b
sub y1,b a,x0 y:(r4)+,y0
mpy x0,x0,a b,y0
mac y0,y0,a x:(r2)+,r0
move #small,x0a,y0
mpy x0,y0,a
move x:(r0),aa, y:(r4)+
sub x1,a y:(r0),b
sub y1,b a,x0 y:(r4)+,y0
mpy x0,x0,a b,y0
mac y0,y0,a x:(r2)+,r0
move #small,x0a,y0
mpy x0,y0,a y:(r4)+,b
move x:(r0),a a,y:(r4)-
sub x1,a y:(r0),b
sub y1,b a,x0
mpy x0,x0,a b,y0
mac y0,y0,a x:(r2)+,r0
move #small,x0a,y0
mpy x0,y0,a
move x:(r0),a a,y:(r4)-
sub x1,a y:(r0),b
sub y1,b a,x0
mpy x0,x0,a b,y0
mac y0,y0,a x:(r2)+,r0
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move #small,x0a,y0
mpy x0,y0,a
move a,y:(r4)
rts  

;the accumulted distance routine  adds the smallest distance from the         
;previously computed table for all pathes going into a state and     
;does this for all eight states.

accumdist
clr a #tables,r0
move #$7fffff,a1
move r0,r4
move #temp,r2
move #3,m0
move m0,m4
move #2,n1
move n1,n5
move r1,r5

;find minimum distance to state zero
do #4,statezero
move x:(r0),x0 y:(r4),b
add x0,b
cmp b,a
tge b,a r0,r3
tge b,a r4,r7
move x:(r0)+,x0 y:(r4)+,b

statezero
move r3,x:(r1)+n1
move a,x:(r2)+ y:(r4)+,b
clr a r7,y:(r5)+n5
move #$7fffff,a1

;find minimum distance to state two 
do #4,statetwo
move x:(r0),x0 y:(r4),b
add x0,b
cmp b,a
tge b,a r0,r3
tge b,a r4,r7
move x:(r0)+,x0y:(r4)-,b

statetwo
move r3,x:(r1)+n1
move a,x:(r2)+ y:(r4)+,b
clr a r7,y:(r5)+n5
move #$7fffff,a1

;find minimum distance to state four 
do #4,statefour
move x:(r0),x0 y:(r4),b
add x0,b
cmp b,a
tge b,a r0,r3
tge b,a r4,r7
move x:(r0)+,x0 y:(r4)+,b
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Figure B-1  DSP56001 Decoding Program Listing (sheet 7 of 11)



 

B-

   
statefour
move r3,x:(r1)+n1
move a,x:(r2)+ y:(r4)+,b
clr a r7,y:(r5)+n5
move #$7fffff,a1

;find minimum distance to state six 
do #4,statezsix
move x:(r0),x0 y:(r4),b
add x0,b
cmp b,a
tge b,a r0,r3
tge b,a r4,r7
move x:(r0)+,x0 y:(r4)-,b

statezsix
move r3,x:(r1)-n1
move a,x:(r2)+
move r7,y:(r5)
move #tables+4,r4
move r4,r0
move x:(r1)-n1,a
clr a x:(r1)-,b
move #$7fffff,a1
move r1,r5

;find minimum distance to state one 
do #4,stateone
move x:(r0),x0y:(r4),b
add x0,b
cmp b,a
tge b,a r0,r3
tge b,a r4,r7
move x:(r0)+,x0 y:(r4)+,b

stateone
move r3,x:(r1)+n1
move a,x:(r2)+y:(r4)+,b
clr a r7,y:(r5)+n5
move #$7fffff,a1

;find minimum distance to state three 
do #4,statethree
move x:(r0),x0 y:(r4),b
add x0,b
cmp b,a
tge b,a r0,r3
tge b,a r4,r7
move x:(r0)+,x0 y:(r4)-,b

statethree
move r3,x:(r1)+n1
move a,x:(r2)+y:(r4)+,b
clr a r7,y:(r5)+n5
move #$7fffff,a1
move (r4)+
8 MOTOROLA

Figure B-1  DSP56001 Decoding Program Listing (sheet 8 of 11)



 

M

   
;find minimum distance to state five 
do #4,statefive
move x:(r0),x0y:(r4),b
add x0,b
cmp b,a
tge b,a r0,r3
tge b,a r4,r7
move x:(r0)+,x0 y:(r4)-,b

statefive
move r3,x:(r1)+n1
move a,x:(r2)+ y:(r4)-,b
clr a r7,y:(r5)+n5
move #$7fffff,a1

;find minimum distance to state seven 
do #4,stateseven
move x:(r0),x0 y:(r4),b
add x0,b
cmp b,a
tge b,a r0,r3
tge b,a r4,r7
move x:(r0)+,x0 y:(r4)+,b

stateseven
move r3,x:(r1)+
move a,x:(r2)+ y:(r4)+,b
clr b r7,y:(r5)+
move #$7fffff,b1

;now move new accumulated distances into the  accumulated distance
;table from the temporary table 
;also find the min distance state and store in r4 which is no longer used

move #$ffff,m0
move #$ffff,m4
move #temp,r3
move #tables,r0
move #large,x1
move #2,n0
do #4,endtable
move x:(r3)+,x0
mpy   x1,x0,a
cmp a,b a, x:(r0)+n0
tge a,b r0,r4

endtable
move #tables+1,r0
do #4,endtablex
move x:(r3)+,x0
mpy x1,x0,a
cmp a,b a, x:(r0)+n0
tge a,b r0,r4

endtablex
;store in r0 instead of r4

move r4,r0
move #8,n1
move  (r0)-n0
rts
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;the traceback routine now goes back through every time period starting
;with the current time period and finds the state from which the path
;came from one time period previous.  At the end of this search, the
;last state found will also point to the path at that state, which is the 
;output  of the trellis.

traceback

;find the displacement from the pointer to table and store value in n4
move #tables,n0
move (r1)-n1
lua (r0)-n0,n5
move r1,r5
do #15,endtrace
move (r1)-n1
move x:(r5+n5),r0 
move r1,r5
lua (r0)-n0,n5

endtrace
move #location,r0
move y:(r5+n5),a
rts

;the output data routine unscrambles the path order and finds one 
;of the four points on the constellation coresponding to the output state
;which is closest to the original input at that time period.

outputdata
move a,b
move #>$b1,x0
cmp x0,a #>$b2,y0
teq y0,b
cmp y0,a #>$b3,x0
teq x0,b
cmp x0,a #>$b1,y0
teq y0,b
move #>$b5,x0
cmp x0,a #>$b7,y0
teq y0,b
cmp y0,a
teq x0,b
move b,r2
move #tables,n2
move x:storr6,r6
lua (r2)-n2,n3
move n3,a
asl a
asl a
move a, n0
move r6,r3
lua (r0)+n0,r4
move #>$7fffff,x1
move r4,r0
do #4,endout
move x:(r3),a y:(r6),b
move x:(r0)+,x0 y:(r4)+,y0
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sub x0,a
sub y0,b a,x0
mpy x0,x0,a b,y0
mac y0,y0,a
tfr a,b x1,a
cmp x1,b
tlt b,a r0,r7
move a,x1

endout
clr a (r7)-
move #location,n0
move r7,r0
move #$f,a1
lua (r0)-n0,r7
move r7,x0
and   x0,a
move a1,y:$eff
rts
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_DATA XE 200 82
 86 8b 8d 93 95 9a 9e 82
 86 89 8f 93 95 9a 9e 82
 86 89 8f 91 97 9a 9e 82
 86 8b 8d 91 97 9a 9e 82
 86 8b 8d 93 94 9a 9d 82
 86 89 8f 92 95 99 9e 82
 86 89 8f 90 97 99 9e 82
 86 8b 8d 91 96 9a 9d 83
 84 8b 8d 93 94 9a 9d 80
 87 89 8f 92 95 99 9e 80
 87 89 8f 90 97 99 9e 83
 84 8b 8d 91 96 9a 9d 82
 85 8a 8d 93 95 9a 9e 82
 85 88 8f 93 95 9a 9e 81
 86 89 8e 91 97 9a 9e 81
 86 8b 8c 91 97 9a 9e 82
 85 8a 8d 93 94 9a 9d 82
 85 88 8f 92 95 99 9e 81
 86 89 8e 90 97 99 9e 81
 86 8b 8c 91 96 9a 9d 82
 85 8a 8d 93 95 98 9f 82
 85 88 8f 93 95 98 9f 81
 86 89 8e 91 97 9b 9c 81
 86 8b 8c 91 97 9b 9c 83
 84 8a 8d 93 94 9a 9d 80
 87 88 8f 92 95 99 9e 80
 87 89 8e 90 97 99 9e 83
 84 8b 8c 91 96 9a 9d 82
 85 8a 8d 93 94 98 9f 82
 85 88 8f 92 95 98 9f 81
 86 89 8e 90 97 9b 9c 81
 86 8b 8c 91 96 9b 9c 83
 85 8a 8d 93 94 98 9d 80
 85 88 8f 92 95 99 9f 81
 87 89 8e 90 97 99 9c 81
 84 8b 8c 91 96 9b 9d 82
 85 8a 8d 93 94 98 9d 82
 85 88 8f 92 95 99 9f 81
 86 89 8e 90 97 99 9c 81
 86 8b 8c 91 96 9b 9d 83
 85 8a 8d 93 94 9a 9d 80
 85 88 8f 92 95 99 9e 81
 87 89 8e 90 97 99 9e 81
 84 8b 8c 91 96 9a 9d 83
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