
Jean-Marie Ory Cost effective replacement of analog parts by DSP software

1

Cost effective replacement of analog parts
by DSP software

by Jean-Marie ORY

Centre de Recherche en Automatique de Nancy
ESSTIN

Université Henri Poincaré, Nancy, France

ory@esstin.uhp-nancy.fr

Jean-Marie Ory Cost effective replacement of analog parts by DSP software

2

1 Introduction

1.1 Analog to DSP: why ?

Many industrial control applications require sophisticated signal processing. In the past, most controllers
were designed using analog components. Later, low cost single chip conventional micro-controllers were
used in those tasks requiring sequencing, accurate timing, man-machine interfaces etc... but still lot of
analog components had to be used.
The emergence of new generations of fast, low cost Digital Signal Processors (primarily designed for the
communication industry) allows reducing the analog parts to only sensors, AD converters, power
outputs, and actuators.

1.2 Example: the linear inverting integrator

In order to get an opinion about how things can be done, let's look at a simple example: the linear
inverting integrator (Fig. 1) .

The performed transfer function is

RCs

1
)s(X
)s(Y −=

or, in the time domain:

 ∫ ττ−=
t

0t
0 d)(x

RC
1

y)t(y

If we want to translate this function into DSP software, in most cases, we would approximate the
integration process by a digital accumulation to be executed at each sampling period T (Fig. 2).

z-1

-T/RC

Σ
xk yk

Fig. 2 Simple digital integrator

Digital inverting integrator:

k1kk x
RC
Tyy −= −

or in z transform:

)z1(RC

T
)z(X
)z(Y

1−−
−=

which can be translated in DSP56300 assembly
language by following code segment:

integ move yk,a
move xk,x0
macri #-T/(R*C),x0,a
move a,yk

Execution time is 40ns per sample at 100MHz

R
C

+

-

Fig. 1 The analog inverting integrator

x input

y output

Jean-Marie Ory Cost effective replacement of analog parts by DSP software

3

Now, it is often desirable to force the initial output y0 to a defined value. On an analog design, this will
oblige the designer to add a relay in the following manner (Fig. 3):

Obviously, the digital version is straightforward: at initialization time, only 2 lines have to be added:
move #yini,a
move a,x:yk

Since analog components are not accurate, sometimes, the value of R would have to be made
adjustable. This is not necessary in a DSP environment: calculations are made with a precision (< 10-6

for 24bits) not comparable with analog components precision (about 1% in best cases).
This example shows that a digital realization of a single function will most often be much simpler
than an analog version for the same function.

Hereunder are some advantages of the DSP technology.

1.3 Modifications made easy

The most obvious advantage of software versus analog hardware is the ease of modifications. Thus,
applications for which working conditions have not been well defined at the beginning of the study, will be
easily maintained by applying software updates.

1.4 Better precision, better stability, no trimming

Every analog designer knows that most common analog components have precision tolerances about ±5
to ±10%. Components with tolerances <= to ±1% are rather expensive. This implies frequent adjunction
of adjustment potentiometers, which causes additional cost, due to time spent for trimming.
Furthermore, component values are dependant to temperature. This is dramatic when a capacitor and an
inductor define the resonance frequency of a filter.
A DSP application needs 2 precise components: the clock oscillator and the AD converter.
Clock oscillators have commonly a precision and a stability over temperature of about 10-100ppm.
AD converters can be chosen with a great precision, but in most industrial applications, 12 bits will be
enough. Resolution is therefore 1/4096, and the precision of the reference voltage source will be about
1%. It's drift with temperature will be about 0.001% / K.
In these conditions, calculation errors due to finite length numbers within DSPs (16, 24, 32, 48 or 56 bits)
will appear negligible in most cases.

R

R1 R1

C

-yini input

x input

y output

"Load yini"
logic

command

+ Vcc

Fig. 3 Initializable Analog inverting integrator

Jean-Marie Ory Cost effective replacement of analog parts by DSP software

4

1.5 New functions

Some signal processing functions are very difficult to implement on analog hardware, whereas these are
easy in software, for example:
• Pure delay lines
• Convolvers, Hilbert transformers
• Adaptive filters
• Arbitrary non-linear function generators
• Neural networks
• Fourier Transforms

1.6 Speed of development

The designer who has a DSP card available with a library of configurable bloc functions will be able to
design a new product by just assembling a few software blocs, adjusting their parameters, and testing
the prototype. This will take a few hours in most cases.
 In the case of an analog design, the designer would have to simulate the circuit, design the printed
circuit, and cable the prototype before testing it. This can take a couple of weeks.

1.6 Lower cost

In terms of production cost, an analog application will have a price roughly proportional to its complexity,
whereas a DSP application will have a non negligible initial price, but this price is much less dependent
on complexity (Fig. 4).

Thus there exists a threshold level of complexity over
which DSP design should be used in order to minimize
cost. When complexity level meets the maximum DSP
performance, then, a more powerful chip or a second
DSP chip has to be used, producing a step in the DSP
cost curve.

1.7 Analog or DSP ? Comparing costs

Production cost of an industrial analog card:

Let's try to establish a rough measure of a printed circuit's cost, that is expected to be produced in
quantities of N pieces:

Cost of design (simulation, CAD, routing) / N
+ Sum of components prices
+ (price per pin to solder) * (number of pins or holes)

Production cost

Complexity

Analog
design

DSP
design

DSP
profitability
threshold

Application needs a
more powerful chip

DSP used
at 100%

Fig. 4 Production costs: Analog and DSP

Jean-Marie Ory Cost effective replacement of analog parts by DSP software

5

According to Arnatronic, a company which designs and produces a great number of custom industrial
control electronic systems, following rule of the thumb can be applied to get orders of magnitude:

Cost of a design 2000 to 5000 Euro, (mostly depending on printed circuit surface)
Cost of production: ~ 3 Euro per analog IC . This also includes associated passive low precision
components, and their implantation.

Production cost of an industrial DSP card

Example A
Processor DSP56309 80MHz, 1Mb E²PROM, 2x ADC 12b 800Ks/s, 2x DAC 12b, 36 logic I/O, RS232,
JTAG, OnCE
Production cost: 120 Euro for 100 pieces

Example B
Processor DSP56002 40MHz, 1Mb E²PROM, 1x ADC 12b 100Ks/s + Mux 8 ch, 16 logic I/O, RS232,
OnCE
Production cost: 75 Euro for 100 pieces

Let's apply the previous rule for a given 100 pieces fabrication:
Analog version: Design cost = (3000/100) +3 x (number of IC's) Euro per card
Thus,
"Example A" DSP card (120 Euro) is profitable to replace an analog design over 30 analog ICs,
"Example B" DSP card (75 Euro) is profitable to replace an analog design over 15 analog ICs.

2 Converting analog designs into DSP software

2.1 From s to z

Designs with analog components are mostly used to create linear time transfer functions. These are
expressed in their Laplace Transform equivalent (variable s).
In a DSP application, signals are sampled at a frequency Fs before being converted to digital. Fs should
be chosen in order to avoid aliasing, which implies:

 Fs > 2Fmax

where Fmax is the highest frequency component of the signal spectrum. The DSP will have to process
several streams of digital input samples, and generate several streams of digital output samples. In
order that digital behavior meets the equivalent continuous time (analog) behavior, several methods are
commonly used:

• Impulse invariant transform method:
The digital system must have the same impulse response as the analog model at the sampling times kT.
This transform can be described by:

hd(k) = ha(kT)

1aT ze1
1

as
1

−−−
→

+
• The backward difference method:
Recalling that s is the derivation operator, an approximation of the signal derivative at sample k is

T
xx 1kk −−

 thus:
T
z1s

1−−→

• The Bilinear Transform method:

1z
1z

T
2s

+
−→

Jean-Marie Ory Cost effective replacement of analog parts by DSP software

6

The Bilinear Transform is usually the preferred method. Care has to be taken that the frequencies are not
linearly related in the digital and the analog model. If, for instance, a resonance occurs at frequency fa in
the analog model, then, it will occur at frequency fd in the digital model with following relationship:

T
)Tf(Tanf d

a π
π=

This obliges the designer to execute an operation named "pre-warping of the frequency axis" if a given
frequency response has to be respected.

2.2 Creating linear transfer functions

Two types of linear transfer functions can be easily programmed on DSPs:

Non recursive or FIR (Finite Impulse Response) which is a digital convolution (Fig. 5)

Y(z) / X(z) = Σ hn.z-n

or: yk = Σ hn.xk-n

Recursive or IIR (Infinite Impulse Response)

Y(z) / X(z) = Σ bm.z-m / (1 - Σ an.z-n)

or: yk = Σ an.yk-n + Σ bm.xk-m

Several forms of implementation are commonly used:

• Direct form (one delay line for the xk's one for the yk's)
• Canonic form (single delay line)
• Canonic transposed (single delay line)

2.3 Nonlinear functions

In the analog world, nonlinear functions are approximated by complicated diode resistors networks which
are temperature sensitive.
In the DSP world, nonlinear functions are generated by reading and interpolating within a table of
constants in memory. The input signal is converted to a table entry address. The integer part indexes the
table, and the fractional part allows interpolating within 2 consecutive points (Fig. 6).

Impulse
response

hnR0

R4

Delay
line

xk-n

The program uses 2 buffers, the first one as a digital delay
line, the second one holding the sampled impulse response.
The DSP56xxx code for the sample time execution task is
given by:

move x0,x:(r0)
clr a x:(r0)-,x0 y:(r4)+,y0
rep #N-1
mac x0,y0,a x:(r0)-,x0
y:(r0)+,x0
macr x0,y0,a (r0)+Fig. 5 FIR structure

Jean-Marie Ory Cost effective replacement of analog parts by DSP software

7

2.4 Timing functions

Analog timers are done with slope generators followed by comparators. Since time constants are
depending on a capacitor value, analog timers aren't accurate and are temperature dependent.
In the digital world, timing is done by counting a given number of clock cycles. Fast timings such as high
frequency Pulse Width Modulation (PWM) will be done in hardware, using an onboard timer counter,
whereas lower frequencies can be generated in software by counting the sampling clock cycles.

2.5 Interface and communication functions

Traditional man-machine analog interfaces are potentiometers and voltmeters.
On a DSP system, internal information is digital, thus digital interfaces are welcome. Most often a serial
RS232 interface will be very useful for communicating with a computer.
Potentiometer equivalents are rotational optical encoders. Since these components are still expensive, a
couple of increment / decrement buttons are often preferred. Potentiometers are replaced by digital
displays.
In systems which have very complicated front panels including a great number of LED indicators,
displays and push-buttons, a method of minimizing wiring consists of using a small local micro-controller
which communicates via a serial line with the DSP. This communication can be done in background,
using a DMA channel of the DSP. Therefore the DSP software will just have to exploit the I/O data image
which is mapped in it's own memory.

3 Designing DSP software

3.1 Software architecture of a general real time control application

A general industrial real time control application can be split in 4 functional groups:
• Initializations and system management tasks:
The purpose of this module is to configure the machine hardware at startup, load programs and data in
internal memory, initialize variables and launch the main loop execution.
• Timing and sequencing tasks:
Combination of hardware timers (generating interrupts) and software timers usually based on the
sampling frequency. The aim of a software timer is to set a flag at timeout. This flag is tested and cleared
by low priority tasks waiting for execution.
• Tasks to be executed at the sampling frequency
These tasks actually do the real time signal processing job. Each task can be considered as an
independent bloc taking data samples present on the inputs and processing them to new data
transferred to outputs. Thus each bloc simulates an analog signal processing circuit with a given transfer
function. Blocs are connected between each other by virtual wires which consist in transferring data from
bloc outputs to inputs of other blocs. Most often, AD converters constitute the initial inputs and DA
converters the final outputs.
• Asynchronous I/O and communication tasks
What characterizes asynchronous I/O and communications is the no relationship between their
occurrence times and other timings available on the machine. Thus producer-consumer protocols with
FIFO management have to be installed in order to manage different data rates.

NL function
table

y(n)
y(n+1)

int

x

fract

y = f(x)
Table read with linear interpolation:
y = Table[int(x)]
 + fract(x). (Table[int(x)+1] - Table[int(x)])

Fig. 6 Generating nonlinear functions

Jean-Marie Ory Cost effective replacement of analog parts by DSP software

8

3.2 Writing modules in C language

C language programming is the most common and fastest way for generating DSP applications.
However, C compilers generate non optimal code.
On DSP56xxx, reasons for this are:
• Parallel memory fields not supported.
• Fractional saturation arithmetic not supported .
• Modulo addressing not supported.
Thus time sensitive routines should be written in assembly language and embedded within the C
program.

3.3 Writing modules in assembly language

Writing modules in assembly language requires a good knowledge of the machine's architecture and
instructions. Long programs must absolutely be fractionated into several short modules in order to be
understandable. Fortunately, the Motorola DSP assembler includes several features that permit efficient
programming in assembly language, in particular:
• Macros with arguments
• Conditional assembly
• Mathematical functions
• Relocatable sections with attributes

3.4 Using macros
Macros allow to generate a sequence of instructions or directives with a single identifier. Using
arguments allow variations in the generated code. The assembler must have read the macro definition
prior to using the new identifier. The macro is parsed by a preprocessor before being expanded.
Following example shows some features found on macros and conditional assembly:

Example:
Vector multiplication
vmul macro size,vector1,vector2,vector3

if (@cnt()>4)|(@cnt()<3) ; if syntax not correct,
fail 'Syntax: vmul size,vector1,vector2[,vector3]' ; generate error
else

if @cnt()=3 ; if 3 arguments, destination is vector 3
vmul size,vector1,vector2,vector2 ; self nested macro call
else
section exec ; Section to be executed at sampling time
move #vector1,r0 ; initialize pointers ...
move #vector2,r4
move #vector3,r5
move #size-1,x1
jsr vecmul ; call function
endsec

if !@def(vecmul) ; check if code has already been implemented
section routines ; (do not generate code, if it already exists)

vecmul move x:(r0)+,x0 y:(r4)+,y0
do x1,vecmul1
mpy x0,y0,a x:(r0)+,x0 y:(r4)+,y0
move a,y:(r5)+

vecmul1
rts
endsec
endif

endif
endif

Jean-Marie Ory Cost effective replacement of analog parts by DSP software

9

3.5 Creating a library of software modules

For a company which designs many applications of the same type (example: industrial control), it will
be valuable to create a software library of ready-to-use modules. These modules have to be written as
ASM macros in a way that makes their usage transparent to non specialists.

In following example (Fig. 7), a DSP is initialized to trigger the AD converters at 10KHz; AD1 input is
applied to a first order low-pass filter, and the result applied to a 100 sample delay line and to DA1
output; The delay line output is applied to DA2 output.

This Real Time application is split into two parts: the Data Flow which describes the signal paths and
the Program Flow which gives the processing order:

; Demo
; DATA FLOW:
; Define connections (say which variables are common)

cn ad1,filter1_in ; transmit information
cn filter1,da1 ; between blocs
cn filter1,del1_in ; ...
cn del1,da2 ; ...

; PROGRAM FLOW
loop ada 10000. ; wait for AD conversion

lp1 filter1,10.0,abs ; Execute low-pass at 10Hz
delay del1,100 ; Execute 100 sample delay
goto loop ; Wait for next sample

This code is all that the user has to write. Assembly language syntax is respected, but each mnemonic
is actually a macro. Each macro contains several sections. These describe code implementation,
initialization and execution. These sections are memory mapped during the linking process.
The assembly / linking batch file adds all required system initialization files at compilation, therefore the
generated machine code is directly ROMable.

AD1 DA1

DA2

filter1
Low-p. 10Hz

del1
Delay 0.01s

Fig. 7 Bloc programming example

Jean-Marie Ory Cost effective replacement of analog parts by DSP software

10

4 Bloc components

4.1 Identification
Each bloc instance must have a unique name (ASCII string). This name is concatenated to every
internal block variable name, thus generating unique identifiers.

4.2 Processing code
The processing code is an executable machine code segment which performs the desired signal
processing function between inputs and outputs. It is often a subroutine which is called from the
execution entry. Several instances from a same bloc type with different parameters will generate only
one routine segment.

4.3 Initialization code
The initialization code is a machine code segment which is executed during system startup, or
eventually on demand. If no INIT segment has been defined in the bloc, the system will clear it's state
variables to zero at startup.

4.4 Real time segment
This segment executes at sampling times. It is a code segment which usually initializes pointers to
variables and data, and launches the processing code routine with adequate parameters.

4.5 Variables
Each bloc instance has variables which actually carry the information to process. Inputs and outputs are
considered as variables. On DSP56xxx variables are generally implemented in the X: field.

4.6 Data
Most blocs require constant values such as gains, filter parameters ... Since these data are often
associated to variables within 2-operands instructions, on a DSP56x, they will be located in the Y: field.
This allows the use of efficient parallel move instructions.
Some data can be considered as variables, for instance coefficients of an adaptive filter, or neural
network weights.

4.7 Signal properties
Each physical problem handles data representing real measurements with associated units. A DSP bloc
processes one or more input data streams and generates one or more output streams. Each data
stream has an associated unit and scaling factor. These values (compilation time variables) are passed
to bloc inputs by the Connect (CN) macros. Depending on the realized function, new values are available
on the bloc's outputs, which will propagate further, and so on. A units / scaling factors report is
generated at the end of compilation which will help to point out some design errors .

4.8 Execution time
When the DSP application has to simulate an analog diagram, each bloc will have to execute once at
each sampling period. Thus, the sum of all bloc execution times is calculated and compared to the
sampling period. Execution times can be calculated during the compilation process, using the
"cumulative cycle count" option. At the end of compilation, an error message will signal if total blocs
execution time is longer than 90% of the sampling period .

4.9 Resources
Each bloc occupies some room in memory. Some blocs use part of the DSP chip's hardware. At end of
compilation, an error message report signals to the programmer if more memory than available has been
reserved, or if some exclusive hardware resources have been allocated more than once.

Jean-Marie Ory Cost effective replacement of analog parts by DSP software

11

5 Application example

5.1 Bloc diagram of a TIG (Tungsten Inert Gas) welding machine

This example shows a typical use of a DSP in order to reduce components count and cost. The original
analog version of this TIG welding machine was extremely complex, thus hardly valuable.
The use of a small DSP card has allowed to reduce dramatically the components count, and even to add
some functionality not available on the analog version.

Here, (Fig. 8) the job of the DSP is to generate a 80KHz Pulse Width Modulated (PWM) rectangular
waveform which is used to drive the MOS inverter. The aim is to get an arc with a controlled variable
current. This current can be direct or alternative with an arbitrary periodic waveform. For an alternative
output, a control on IGBT switches will decide which half rectifier bridge will be used. Voltage
measurement just serves for getting the arc's dynamic impedance.

5.2 Arbitrary waveform generator

One aspect which was very complicated (thus not implemented) in the analog version was the arbitrary
waveform generator which is the reference control signal for output current (Fig. 9).

From data (a) and (b), the DSP will compute the phase increments per sample for the positive and the
negative waves. Integrating these values modulo N will generate addresses within N point waveform
tables. Interpolation between points will give an accurate result. This result is then multiplied by (e)-(g)
and added to (g) in order to get the required positive amplitude and pedestal. When passing from
positive to negative half wave, a new set of parameters is loaded.

Rectifier +
filter

MOS
inverter

Timer

DSP card
Arc

Intensity

Voltage

PWM Polarity
control

220 /
380V ~

Fig. 8 TIG welding machine bloc diagram

a

b

c

d

e

f
h

g
a Wave frequency (50 .. 250Hz)
b Duty cycle (0..100 %)
c Positive waveform (4 wave tables in memory)
d Negative waveform (4 wave tables in memory)
e Positive amplitude
f Negative amplitude
g Positive pedestal
h Negative pedestal

Fig. 9 Arbitrary waveform

Jean-Marie Ory Cost effective replacement of analog parts by DSP software

12

5.3 Neural control module

The waveform described in 5.2 serves as an arc current reference. The description of the system function
between the PWM input and the arc current output is not straightforward. Variable time constants are
produced by the saturable inductor associated to the variable arc dynamic resistor. Even in DC mode,
the system command is highly non linear. On the analog version (constant DC input reference), a
nonlinear PID regulator was used.

In order to adapt dynamically the controller to the best behavior in approaching the desired output
waveform, we used a small neural network with online training as described in Fig 10 :

Wi,n

Wn

Reference
input

PWM
command

u(k)

Mesure of
intensity
y(k-1)

TIG
process

Ref. x(k)

+ _

z -1

z -1

Advanced Ref. x(k+1)

Delayed feedback y(k-2)

feedback y(k-1)

Neural network control algorithm:

 Nn = Tanh [α * (w0,n + Σ ini * wi,n)] i = 1..4

 out = β * (w0 + Σ Nn * wn) n = 1..5

Training algorithm:
 Wn(k+1) = Wn(k) + a1 . ε . Nn . dy/du

 W i,n(k+1) = Wi,n(k) + a2 . ε . in i . Wn . g(Nn) . dy/du

ε Error signal

z -1

z -1

dy/du
estimation

Nn
ini

Fig. 10 On line training neural network for controlling the arc current

Jean-Marie Ory Cost effective replacement of analog parts by DSP software

13

Experimentation has shown that the dy/du term never changes in sign. Therefore, this term can be taken
equal to 1 in the training algorithm. In these conditions, implemented on DSP56309 at 64MHz, the
controller takes less than 8µs per sample for both executing and training. Since one decision is taken
every two PWM pulses, the actual sampling period is 25µs, which leaves a comfortable 17µs per sample
window for executing all other tasks.

6 Conclusions

Some companies are still designing electronic control applications using operational amplifiers, precision
resistors and capacitors. Reasons invoked are mainly the cost in terms of development time and DSP
components price. In this paper, we have tried to show that above a determined level of complexity,
DSP solutions are cheaper than analog ones, and bring many other advantages (new functions,
precision, easy product updating). By investing in the design of a set of most used macro modules
library, software development becomes fast and easy.

Our experience of designing a DSP controlled TIG welding machine shows that in practice, a great
number of complicated tasks (such as neural network control) can be implemented in real time at high
sampling rates, on a single small and cheap DSP chip.
