

Motorola, Incorporated
Semiconductor Products Sector
6501 William Cannon Drive West
Austin TX 78735-8598

Implementing Viterbi Decoders Using
the VSL Instruction on DSP Families

DSP56300 and DSP56600

by

Dana Taipale

This application report describes how to generate, from a set of
convolutional code polynomials, the assembly code needed for

implementation of a Viterbi decoder.

 OnCE and Mfax are trademarks of Motorola, Inc.

 M

otorola reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design. Motorola does not assume any liability arising out of the application or use
of any product or circuit described herein; neither does it convey any license under its patent rights nor
the rights of others. Motorola products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer
purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,
even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and

are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

©MOTOROLA INC., 1998

This document contains information on a new product. Specifications and information herein are subject to change
without notice.

Order this document by number APR40/D
(Revision 0, May 1998)

MOTOROLA Viterbi Decoder Implementation iii

TABLE OF CONTENTS

Introduction . 1-1

1.1 Introduction. 1-3
1.2 Viterbi Algorithm . 1-3
1.3 Manual Organization . 1-4

The Viterbi Algorithm. 2-1

2.1 IS-136. 2-3
2.2 Convolutional Encoding . 2-3
2.3 Viterbi Decoder. 2-4
2.4 Algorithmic Enhancements. 2-12

Expanding the Viterbi Algorithm . 3-1

3.1 Introduction. 3-3
3.2 Partitioning the Task. 3-3
3.3 The Inner Loop: Viterbi Butterflies . 3-3
3.4 Creating the Branch Metrics. 3-6
3.5 Storing the Paths . 3-11
3.6 Traceback: Obtaining the Decoder Output 3-13
3.7 Main: Gluing the Pieces Together . 3-17
3.8 Memory Organization . 3-19

Algorithmic Extensions . 4-1

4.1 Introduction. 4-3
4.2 Allowing More General Branch Metrics 4-3
4.2.1 Modify Viterbi Butterfly. 4-4
4.2.2 Modify Branch Metric Generation . 4-6
4.3 Starting from 0: The Pre ACS Macro . 4-8
4.4 Collapsing the States . 4-10
4.5 Main: Putting the Pieces Back Together 4-12

Summary . 5-1

5.1 Summary . 5-3

iv Viterbi Decoder Implementation MOTOROLA

5.2 Conclusions .5-3
5.3 Program Listings .5-4

APPENDIX A Basic Algorithm Program Listing. A-1

A.1 Viterbi Algorithm PROGRAM LISTING A-3

APPENDIX B Extended Algorithm Program Listing B-1

B.1 16-Bit Enhanced Viterbi Decoder PROGRAM LISTING B-3

APPENDIX C 24-Bit Algorithm Program Listing C-1

C.1 24-Bit Enhanced Viterbi Decoder PROGRAM LISTING C-3

MOTOROLA Viterbi Decoder Implementation v

LIST OF FIGURES

Figure 2-1 Example Rate 1/2 Convolutional Encoder. 2-3

Figure 2-2 Single State of Prototype Encoder Tree Diagram 2-5

Figure 2-3 First Five Levels of the Encoder State Tree 2-6

Figure 2-4 Using Multiple Input Paths to Collapse the State Tree 2-8

Figure 2-5 Using Intermediate States to Eliminate Partial Paths 2-9

Figure 2-6 Trellis Structure for Viterbi Decoding. 2-10

Figure 2-7 Example Viterbi Butterfly . 2-11

Figure 2-8 Encoder Tap Symmetry to Reduce Calculations. 2-13

Figure 2-9 Applying an Offset to Obtain Odd Symmetry in the Branch Metrics 2-14

Figure 3-1 Stored B0 Path . 3-12

Figure 4-1 Polynomial (1,1+D) Trellis . 4-3

vi Viterbi Decoder Implementation MOTOROLA

MOTOROLA Viterbi Decoder Implementation vii

LIST OF TABLES

Table 2-1 Input/Output Mapping . 2-4

Table 3-1 Recreated Encoder Outputs . 3-8

Table 5-1 Viterbi Decoder Code Statistics. 5-4

viii Viterbi Decoder Implementation MOTOROLA

MOTOROLA Viterbi Decoder Implementation ix

LIST OF EXAMPLES

Example 3-1 Using the VSL Instruction in a Viterbi Butterfly 3-4

Example 3-2 Find Branch Metrics Code . 3-9

Example 3-3 Partial Path Storage Code Listing . 3-14

Example 3-4 Traceback Output Path Code Listing . 3-15

Example 3-5 Main Viterbi Decoding Routine: Initialization 3-17

Example 3-6 Main Viterbi Decoding Routine: Patch Metric Update 3-18

Example 3-7 Main Viterbi Decoding Routine: Termination and Traceback 3-19

Example 3-8 Memory Organization Code. 3-20

Example 4-1 Modified Viterbi Butterfly . 4-4

Example 4-2 Modified Branch Metric Generation Code . 4-6

Example 4-3 Pre-ACS Macro . 4-9

Example 4-4 The ACSFlush Macro . 4-11

Example 4-5 Main Program Code Changes . 4-13

Example A-1 Basic 16-Bit Implementation of a Viterbi Decoder A-4

Example B-1 Extended Algorithm Program Listing . B-3

Example C-1 24-bit Algorithm Program Listing . C-3

x Viterbi Decoder Implementation MOTOROLA

SECTION 1

INTRODUCTION

1-2 Viterbi Decoder Implementation MOTOROLA

Introduction

1.1 Introduction .1-3
1.2 Viterbi Algorithm .1-3
1.3 Manual Organization .1-4

Introduction

Introduction

MOTOROLA Viterbi Decoder Implementation 1-3

1.1 INTRODUCTION

TodayÕs communication systems typically make considerable use of signal processing to
improve their performance. Two common functions that use signal processing to
improve performance are channel equalization and error correction coding. For
equalization, maximum likelihood sequence estimation is among the most popular
schemes; for error correction, convolutional coding with Viterbi decoding is a method of
choice. Both communication functions make use of the Viterbi algorithm to accomplish
their task. To simplify the explanations presented here, the focus is on using the
algorithm for error correction.

This application report is written with the intent of instructing the reader who, with a set
of convolutional code polynomials, can generate the assembly code needed to
implement a Viterbi decoder on the DSP56300 and DSP56600 families of digital signal
processors (DSPs).

The DSP56300 and DSP56600 families of DSPs are designed to implement
communication functions. Because the Viterbi algorithm occupies such a prominent
position in many communications systems, these processor families have a special
instruction, Viterbi shift left (VSL). This instruction is designed to improve the
performance of the processor when doing Viterbi algorithm operations. One goal of this
application note is to explain the use of the VSL instruction when implementing the
Viterbi algorithm.

1.2 VITERBI ALGORITHM

Communication applications that use convolutional coding or sequence estimation often
use the Viterbi algorithm to efficiently process the received data. These applications
occur so often that the DSP56300 and DSP56600 families have a special instruction to
enhance the algorithmÕs implementation. This application note begins by introducing
the Viterbi algorithm, then proceeds step by step through an implementation of that
algorithm for a specific error correction example. In addition, use of the new VSL
instruction is explained for obtaining efficient coding for applications requiring the
Viterbi algorithm.

1-4 Viterbi Decoder Implementation MOTOROLA

Introduction

Manual Organization

1.3 MANUAL ORGANIZATION

Section 2

 of this manual covers many basics of the Viterbi algorithm and introduces
much of the terminology used in this application note. Those already acquainted with
the algorithm may wish to proceed directly to

Section 3

.

Section 3

 shows how to develop assembly language routines for the Viterbi algorithm.
This is done by means of an example, taking a set of encoding polynomials from the
wireless interim standard IS-136 and developing the assembly routines needed to
implement the corresponding decoder using the Viterbi algorithm.

Section 4

 discusses some code modifications that are useful for generalizing and
optimizing the example code. The code-to-cover generalized branch metrics is extended,
and an efficient method for normalizing the path metrics is introduced. In addition, two
additional sets of code are given for more efficient processing of data periodically forced
through a known state.

Section 5

 summarizes the application report and presents interesting data and statistics
arrived at by comparing the basic Viterbi algorithm code of

Section 2

 with that of the
modified program code presented in

Section 3

 and

Section 4

.

Appendix A

 contains the complete program listing for

Section 3

.

Appendix B

 contains the complete program listing for

Section 4

.

Appendix C

 contains the complete 24-bit program listing for

Section 4

.

SECTION 2

THE VITERBI ALGORITHM

2-2 Viterbi Decoder Implementation MOTOROLA

The Viterbi Algorithm

2.1 IS-136 .2-3
2.2 Convolutional Encoding .2-3
2.3 Viterbi Decoder .2-4
2.4 Algorithmic Enhancements .2-12

The Viterbi Algorithm

IS-136

MOTOROLA Viterbi Decoder Implementation 2-3

2.1 IS-136

This section introduces the Viterbi algorithm through an example from industry: the
convolutional error correcting code used in IS-136, the TIA/EIA interim wireless
standard. Here it is shown how the algorithm is derived, and some typical
computational enhancements are introduced.

2.2 CONVOLUTIONAL ENCODING

The Viterbi algorithm can be usefully illustrated by implementing a convolutional code.
A convolutional encoder implementation in hardware is illustrated schematically in

Figure 2-1

. In order to illustrate the steps needed to implement Viterbi decoders in
general, this application report develops the assembly code needed to implement a
Viterbi algorithm decoder for this encoder.

Figure 2-1

Example Rate 1/2 Convolutional Encoder

In this figure, the square boxes represent a one-bit-wide shift register. Some shift register
outputs are connected to modulo 2 adders (i.e., parity generators). Every time one bit is
shifted into the input, two output bits are generated by the adders. Because we have
more output bits than input bits, we have redundancy. The redundant information can
be used to correct errors at the receiver.

S1 S0S2S3S4

1DD2D3D4D5

2-4 Viterbi Decoder Implementation MOTOROLA

The Viterbi Algorithm

Viterbi Decoder

Error correcting codes have some standard notation. This example, used in the wireless
standard IS-136, is a rate 1/2 code, meaning that for each processing period, one
information bit is taken in and two bits of output are generated. The word (S

4

,S

3

,S

2

,S

1

,S

0

)
is the encoder state. The remaining bit of the encoder we call the input bit. There is a
convenient notation that describes the encoder using polynomials. This encoder can be
described with the encoding polynomials (1+D+D

3

+D

5

,1+D

2

+D

3

+D

4

+D

5

). Each factor D
corresponds to a one clock delay for that adder input. Given the encoding polynomials,
we can begin to design the Viterbi decoder.

2.3 VITERBI DECODER

To design a Viterbi decoder, begin by taking some example encoder input and
generating the corresponding output. An example appears in

Table 2-1

, where it is
assumed that the encoder is 0 filled at the start. For proper decoding, we need to recreate
the encoder states and find the set of state changes, or transitions, that produce an
encoder output that best agrees with our decoder input data. We begin using the same
assumption we used in generating the encoder output in

Table 2-1

. We assume that the
initial state of the encoder is 00000.

Table 2-1

Input/Output Mapping

To compare our recreated encoder state with the decoder input, we keep track of the
agreements between the recreated encoder outputs and the decoder inputs. The
cumulative agreement for a path leading to one particular recreated encoder state is
called a path metric for that path. Incremental agreements are called branch metrics.

Encoder
Input

Encoder
Output

1 11

0 10

1 10

1 10

0 10

The Viterbi Algorithm

Viterbi Decoder

MOTOROLA Viterbi Decoder Implementation 2-5

Figure 2-2

 shows a prototype for one state of the state tree for this decoder.

Figure 2-3

shows the entire tree used by the decoder to track the first five input pairs. The state of
the recreated encoder appears in the box. Along each arrow (a state transition) appears a
number pair showing the corresponding encoder output bit pair for that state transition
(the output produced immediately before the state changes). This figure is ordered so
that transitions corresponding to an input 0 are always the upper path and transitions
corresponding to an input 1 are always the lower path. To determine the encoder output
for a given transition, load the encoder with the state and use a 0 or 1 for the input bit,
according to the transition chosen. The encoder polynomials then determine the encoder
output, as shown in

Figure 2-1

.

Figure 2-2

Single State of Prototype Encoder Tree Diagram

State Transiti
on

Encoder Output/
Branch Metric

 Path Metric State

2-6 Viterbi Decoder Implementation MOTOROLA

The Viterbi Algorithm

Viterbi Decoder

Figure 2-3

First Five Levels of the Encoder State Tree

11 10 10Input:

00/0

 00000
 00001

 00010

 00000

 00011

 00100
 00101

 00110
 00111

 01000
 01001

 01010
 01011

 01100
 01101

 01110
 01111

 10000
 10001

 10010
 10011

 10100
 10101

 10110
 10111

 11000
 11001

 11010
 11011

 11100
 11101

11110
11111

 00010

 00011

 00100

 00110

 01000

 01001

 01010

 01011

 01100

 01101

 01110

 01111

 00000

 00001

10 10

00/1

00/1

00/1
00/1

11/2

10/2

01/0

11/1

11/1

10/2

01/0

01/0

10/2

11/1

00/1

11/1

10/2

01/0

01/0

10/2

11/1

00/1

11/1

01/0

10/2

10/2

01/0

00/1

11/1

11/1

10/2

01/0

01/0

10/2

11/1

00/1

11/1

00/1

01/0

10/2

10/2

01/0

00/1

11/1

01/0

10/2

11/1

00/1

00/1

11/1

10/2

01/0

10/0

01/2

00/1

11/1

11/1

00/1

01/0

10/2

00
11
10
01
01
10
11
00
11
00
01
10
10
01
00
11
01
10
11
00
00
11
10
01
10
01
00
11
11
00
01
10
11
00
01
10
10
01
00
11
00
11
10
01
01
10
11
00
10
01
00
11
11
00
01
10
01
10
11
00
00
11
10
01

0

0

2

1

1

4

2

2

2

3

1

4

6

3

3

3

3

4

2

3

5

2

2

5

5

6

8

5

3

4

4

00/1

 00011

 00010

 00111

 00110

 00101

 00100

 00001

 00000

 00011

 00111

 00000

 00000

 00010

 00001

 00101

 00001

AA1542

The Viterbi Algorithm

Viterbi Decoder

MOTOROLA Viterbi Decoder Implementation 2-7

Comparing the recreated encoder output with the decoder input, we determine the
number of agreements, shown in Figure 2-3 as the branch metric. We find a branch
metric for each transition. For each state, we track the cumulative branch metrics to form
the path metrics. These are shown as a number appearing above each state box.

To recreate the correct input sequence, we choose the recreated encoder path that best
agrees with the decoder input data. In this case, the best path is the one with the largest
final path metric. For clarity, the path metrics for the best path are distinguished with a
larger font size and bolder arrows. To recreate the input sequence (so far), we can use
two methods. The easiest is to use the state as the decoder output. Unfortunately, this
method will not work after we finish the development of the decoder. The second
method will work when we are done. To obtain the decoder output, trace the best path
(the one with the largest final path metric) back to the beginning. Now, follow the same
path forward again to obtain the input sequence by placing a 0 at the decoder output
each time we choose an upper transition, and a 1 output each time we choose the lower
transition. Using this method on the tree in Figure 2-3 gives us 10110, which agrees with
the encoder input example.

The most troublesome aspect of this decoder is that the number of states we have to
track for each decoder input is actually the number of possible paths. For this coding
example, the number of states doubles for each input. For any reasonable number of
inputs, the amount of work and storage needed for this decoder is far too large to be
practical. To solve this problem, begin by noting that we donÕt really need all the data
generated by the decoder. In particular, all the work goes toward finding the path that
best agrees with the input. We only need the path that gives us the largest path metric. If
we determine that a path cannot ever have the largest path metric, we can ignore that
path for all future calculations.

To collapse the ever-growing tree in Figure 2-3, consider what happens if we continue
the tree for one more pair of decoder inputs. The total number of states would be 64 for
the next input pair. To keep the diagram manageable, only a pair of specially chosen
states appears in Figure 2-4. When we extend the tree to the next state, we get states with
six bits. Note, however, that the encoder we are attempting to trace only needs five bits
to determine its output bits. To emphasize this, the sixth (leading) bit is separated in the
state boxes. Because the extra (leading) bits do not affect the recreated encoder outputs,
we can ignore them. As a result, the 64 states collapse into 32 states again. The only
resulting complication is that each state now has two rather than one entering paths.
Figure 2-4 shows this state collapse as well as each stateÕs multiple input paths in two
example states. To correctly process the decoder input, we must next determine which of
the input paths to keep for each state.

2-8 Viterbi Decoder Implementation MOTOROLA

The Viterbi Algorithm

Viterbi Decoder

Figure 2-4 Using Multiple Input Paths to Collapse the State Tree

To find out how to choose the correct input branch for each state, we use the additivity
of the path metrics. Suppose we want to find the path with the largest metric that
extends from time i to time k (i<k). Also, suppose we are interested in another time j
such that i<j<k. For a given state (encoder state) S at time j, consider two paths P1 and
P2, extending from time i to time j, both entering state S at time j. To get from state S at
time j to time k, consider two more paths Q1 and Q2. Our setup so far is illustrated in
Figure 2-5.

Let the path metric for P1 up to time j be PM1, and let the path metric for P2 up to time j
be PM2. Define QM1 and QM2 to be the partial path metrics for their respective paths.
By partial path metrics we mean the contribution due to the partial path only, that is,
QM1 is the path metric for path Q1 minus the value of the path metric of state S at time j.
Finally, assume that PM1>PM2. Then any path containing P2 cannot be the path with
largest path metric for any time after time j.

00000

0 00001

0 00000

10000

1 00001

1 00000

00

11

11

00

00000

10000

00000

00001

00

11

11
00

The Viterbi Algorithm

Viterbi Decoder

MOTOROLA Viterbi Decoder Implementation 2-9

To understand why this is so, note that the total path metric for is PM1+QM1.
Similarly, has path metric PM1+QM2, has path metric PM2+QM1, and

 has path metric PM2+QM2. Suppose is a candidate for largest path
metric. Then is still larger, as PM1+QM2 >PM2+QM2 (remembering we
assumed that PM1 >PM2). This is true for any Q2. So, if PM1 > PM2, we can eliminate P2
from further consideration at time j, without waiting for the ÒfutureÓ inputs from time j to
time k.

Figure 2-5 Using Intermediate States to Eliminate Partial Paths

In our example, each state will have two paths entering it at any time. The number of
paths doubles each time, but we can now eliminate half of the paths each time as well.
This is the basis of the Viterbi algorithm. To use it, we must keep track of the best path
metric for each state up to the current time. By eliminating paths that can never have the
largest path metric, however, we keep the amount of computation constant with time.
To diagram what is going on, we need a different figure than the tree in Figure 2-3. We
need only keep track of each (encoder) state at each time. The result is called a trellis
because it resembles one. A diagram of a trellis for our IS-136 code appears in Figure 2-6.

The beginning of the trellis does not look the same for each time (each decoder input is a
stage in the diagram). This is because we assumed the encoder started in state 00000. In
general, the encoder can be in any state, and the trellis repeats. For our figure, this can be
seen in stages 6 and 7 (after 5 stages, our encoder can be in any state, so we get a Òsteady
stateÓ in our trellis diagram). Each line in the trellis is a transition, just like the ones in the
tree. For the trellis, however, the number of states is bounded. The number of states for
this trellis is determined by the encoder which has five state bits. This means there are
25 = 32 states in the trellis.

P1 Q1È
P1 Q2È P2 Q1È

P2 Q2È P2 Q2È
P1 Q2È

State S

P1

P2

Q1

Q2

time i time j time k

2-10 Viterbi Decoder Implementation MOTOROLA

The Viterbi Algorithm

Viterbi Decoder

Figure 2-6 Trellis Structure for Viterbi Decoding

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

Stage 1 2 3 4 5 6 7

State

AA1543

The Viterbi Algorithm

Viterbi Decoder

MOTOROLA Viterbi Decoder Implementation 2-11

Fortunately, we do not have to examine all of this trellis at once! For an idea of the basic
processing, we can examine states in pairs. In particular, note that we only need path
metrics of two source states to update a pair of destination states. Note that the source
state pairs are not the same as the destination state pairs.

For our example code, the source state pair 0ABCD and 1ABCD provides the path
metrics needed to update the destination state pair ABCD0 and ABCD1, where ABCD is
fixed for each state pair update. LetÕs examine a single pair update. This is sometimes
called a Viterbi butterfly. An example butterfly is shown in Figure 2-7.

.

Figure 2-7 Example Viterbi Butterfly

To compare the input paths to the state being updated, we must take the path metric for
each state on connecting input branches and add the branch metric associated with that
path. In the example shown in Figure 2-7, the lower branch from state 00100 has a
recreated encoder output of 00. As noted before, this can be determined by finding the
encoder output for a state of 00100, along with an input bit of 1 because we are taking the
lower branch. Assuming a decoder input of 11, we find that neither bit of the recreated
encoder output agrees with the decoder input. We assign a branch metric of 0 (no
agreements). We can do similar assignments for the other branches, as shown in
Figure 2-7.

To update the states, we add the path metrics to the branch metrics. Then we compare
the sums and choose the larger as the surviving branch. The sum of the surviving path
becomes the path metric for the updated state. We must do this update for all state pairs,
for each decoder input. When implementing a Viterbi decoder in software, this update is
the most computation-intensive and creates a do loop that should be optimized to obtain
good performance. In the next section, we will develop DSP56300 assembly code to
implement this algorithm.

00100

10100

01000

01001

5

6
11

00/0
11/2

11/2

00/0

00100

10100

01000

01001

5

6

11

11/2

11/2 7

8

State

Path metric

Encoder out/
branch metric

Decoder
input

2-12 Viterbi Decoder Implementation MOTOROLA

The Viterbi Algorithm

Algorithmic Enhancements

2.4 ALGORITHMIC ENHANCEMENTS

There are a number of modifications that can be made to the algorithm in order to
improve its effectiveness as well as our ability to implement it. In our example, we count
agreements. This produces branch metrics of 0, 1, and 2. In our example butterfly,
however, the branch metrics into the state pair are all 0Õs and 2Õs. This is not entirely a
coincidence. For this code, the encoding polynomials both have taps at both extremes.
What this means is that a 1/0 at the end of the encoder will invert/not invert the encoder
output. For our trellis, this means that the pair of branches into a given state will always
have complementary branch metrics (0 and 2, or 1 and 1). By combining this observation
with one more property, we can simplify the Viterbi butterfly computation.

The additional property for this code (shown in Figure 2-8) is that a 1/0 at the input bit
will invert/not invert the encoder output. For our trellis, this means that the two states
of a state pair being updated will have the same branch metrics, but with their order
reversed (0 and 2 will become 2 and 0, etc.). These polynomial conditions are not true in
general but do occur quite often. To take advantage of them, we subtract 1 from every
branch metric we produce. This gives branch metric pairs of (-1,1) and (0,0).

As shown in Figure 2-9, each pair now has odd symmetry in the two components.
Hence, we need not compute branch metrics for both branches in an update. Instead, we
can find just the uppermost branch metric, and add it as usual for the upper branch.
Next, subtract rather than add it to do the lower branch processing. To process the lower
state update, we subtract the branch metric for the upper path and add to update the
lower path. The total path metrics change, but their relative values do not. Since we are
only looking for the path with the maximum path metric, the results are the same.

The Viterbi Algorithm

Algorithmic Enhancements

MOTOROLA Viterbi Decoder Implementation 2-13

Figure 2-8 Encoder Tap Symmetry to Reduce Calculations

00100

10100

01000

01001

11

00/0

11/2

Decoder
input

S1 S0S2S3S4

1DD2D3D4D5

00100

10100

01000

01001S1 S0S2S3S4

1DD2D3D4D5

11/2

00/0

If all polys have
taps at the input,
branches into the
same state will
have complement
branch metrics.

If all polys have
taps at the last (S4)
state bit, branches
into the lower state
pair will be flipped
versions of the
upper state
branches.

1

2-14 Viterbi Decoder Implementation MOTOROLA

The Viterbi Algorithm

Algorithmic Enhancements

Figure 2-9 Applying an Offset to Obtain Odd Symmetry in the Branch Metrics

A second modification to the algorithm is the ability to use soft decisions. By this we
mean that the input data need not be just a 0/1 decision on a receiver statistic. We can
assign intermediate values to indicate the reliability of the decision. In this way, a 0.001
can be a very reliable 0, a .75 can be a moderately reliable one, and a .49 is just barely a
zero. The Viterbi algorithm generalizes to handle soft decisions with no trouble; the
additions for the metric updates simply have more bits. By using soft decisions, the
ability of the decoder to correct errors is greatly improved.

Note that from an implementation on our DSP view, this modification is almost
invisible, as 16-bit or 24-bit arithmetic will be done regardless of the number of bits in the
branch metrics. Of course, provisions to protect path metric values from overflow may
have to change for some systems.

00100

10100

01000

01001

11

00/-1

11/1

Decoder
input

S1 S0S2S3S4

1DD2D3D4D5

00100

10100

01000

01001
S1 S0S2S3S4

1DD2D3D4D5

11/1

00/-1

After subtracting
one from each
branch metric, the
updates can be
be done by adding
and subtracting 1.

Similarly, the lower
state update can be
done by subtracting 1
first, then adding 1
for the lower branch.
Same metric, but the
add/sub order is
reversed.

1

SECTION 3

EXPANDING THE VITERBI ALGORITHM

3-2 Viterbi Decoder Implementation MOTOROLA

Expanding the Viterbi Algorithm

3.1 Introduction .3-3
3.2 Partitioning the Task .3-3
3.3 The Inner Loop: Viterbi Butterflies .3-3
3.4 Creating the Branch Metrics .3-6
3.5 Storing the Paths .3-11
3.6 Traceback: Obtaining the Decoder Output 3-13
3.7 Main: Gluing the Pieces Together .3-17
3.8 Memory Organization .3-19

Expanding the Viterbi Algorithm

Introduction

MOTOROLA Viterbi Decoder Implementation 3-3

3.1 INTRODUCTION

Having introduced the principal concepts involved in the Viterbi algorithm, we can
proceed to generate code to implement it. There are, however, a number of details that
need attention. We have concentrated on the Viterbi butterfly.The next step involves,
among other things, generating the branch metrics and allowing for multiple word
traceback to recover the output data. Up to now, we have not even discussed how the
path decision might be stored.

The example code in this section shows a basic implementation of the Viterbi algorithm
implemented on the DSP56600 assembly language. These examples decode data
encoded using the convolutional code for IS-136.

3.2 PARTITIONING THE TASK

In this section, we develop code to implement the entire algorithm. We will start with
the most critical section, the Viterbi butterfly code. We then work outward, developing
branch metric storage code and traceback instructions.

All code assumes 16-bit registers and will run as-is on the DSP56600 DSP family. It also
runs correctly on the DSP56300 family of DSPs when they are set in 16-bit arithmetic
mode.

A complete code listing of the modules presented here appears in Appendix A. The code
can be easily modified for 24-bit operation by changing one line of code, as shown in the
detailed traceback code discussion. Note that the test data provided is 16-bit data, and
would have to be changed to 24-bit data to test correctly in 24-bit arithmetic mode. Also,
Appendix C has a 24-bit version of the code discussed in Section 4.

3.3 THE INNER LOOP: VITERBI BUTTERFLIES

We begin by discussing the code used to do a Viterbi butterfly (updating the states). The
easiest way to present the code for this section is to display the instructions, then discuss
their function. The code utilizes the Viterbi shift left (VSL) instruction, designed for
DSP56300 and DSP56600 DSP families to enhance their ability to execute the Viterbi
algorithm. The code appears in Example 3-1.

3-4 Viterbi Decoder Implementation MOTOROLA

Expanding the Viterbi Algorithm

The Inner Loop: Viterbi Butterflies

Example 3-1 Using the VSL Instruction in a Viterbi Butterfly

;*******************viterbi add, compare, select butterfly macro***
; FUNCTION: Update path metrics/paths for the Viterbi algorithm by
; doing an add, compare, select update for state pairs.
; INPUTS:
; r2 should point to the beginning of the branch metric table
; r5 should point to the latest path metric for state 0
; r4 should point to the storage location for updated state 0
; n5 should offset addresses by NUMSTATES/2
; OUTPUTS:
; Updated path metrics/paths stored in XY memory
; REGISTERS USED:
; a,b,x0,y1,r2,r4,r5,n5 r2 unchanged (modulo required)
; Registers:
; r5, pointer to the path metric/path table, arranged as
; x: path metric, y: path, states ordered assuming
; bits shift right to left.
; r4, pointer to the output path metric/path table
; r0, pointer to the branch metric table, arranged
; as x:C, y:D, CD,CD,CD, etc.
;
; SA------NSA
; \ C /
; D \ /
; \/
; /\
; D / \
; / \
; SB------NSB
; C
;***
;
ACS macro
;
; move #BRY,r2 ;r2 points to branch metrics

move y:(r2)+,y1 ;get first branch metric
move l:(r5)+n5,a ;load 1st metric/path pair

;
do #NoOfAcsButt,_P_NextStage ;update each state
sub y1,a l:(r5)-n5,b ;sub pt,br met,get next pair
add y1,b ;update metrics
max a,b l:(r5)+n5,a ;pick max,reload 1st pair
vsl b,0,l:(r4)+ ;store survivor, end top half
add y1,a l:(r5)-n5,b ;add pt,br met, reload next pair
sub y1,b x:(r5)+,x0 y:(r2)+,y1 ;inc st ptr,ld nxt br met
max a,b l:(r5)+n5,a ;pick max met,load next pair
vsl b,1,l:(r4)+ ;st survivor,end 2nd half

_P_NextStage
nop ;needed to separate do loop ends
endm

Expanding the Viterbi Algorithm

The Inner Loop: Viterbi Butterflies

MOTOROLA Viterbi Decoder Implementation 3-5

We now explain the routine line by line. Begin by moving the address of the
precomputed branch metric table to the r2 address register. In our final, combined
routine, this is unnecessary because the desired value already exists in r2, but we include
it as a comment here to make it clear that this value is needed. Branch metric creation
will be discussed in Section 4.2.

Next, we update the address register that points to the states used to update. The
memory that stores the path metrics is divided into two parts. In this routine, r5 points to
the old path metrics, used to update the new ones. Address register r4 points to the new
states, those being updated. For each new decoder input, we swap the memory used to
store the updated path metrics with the memory pointing to the old path metrics. To do
this, we initialize address registers r4 and r5 to be modulo registers, with a modulus of
twice the number of states. Address incrementing for the butterfly is so designed that at
the end of the loop, r4 and r5 have automatically swapped pointer values. Thus, no
instructions need be dedicated to swapping the memory.

The path metrics are stored in X memory. Collocated with them in Y memory are the
paths. By paths, we mean a word that contains the bit decisions describing the recreated
encoder input data that would produce that path in the decoder. How we get these will
become clear below as we go through this code. By collocating the path metrics with
their respective paths, we can get both by doing long memory moves. The next two
moves load the first branch metric, and the first (state 00000) path metric/path pair.

Now we are ready for the loop. It is necessary to update every state, and we update
states in pairs. Hence, the number of loop passes is equal to the number of states divided
by 2. In our example, this is the value of NoOfAcsButt (i.e., 16).

Because we have polynomials with taps at both ends of the encoder, we can use one
branch metric, and add and subtract to update our states. We begin by subtracting the
branch, loading the second path metric/path pair at the same time.

Next, we add the branch metric to the path metric we just fetched. Note that for both the
subtract and add of the metric, the path metrics in A1 and B1 are affected, but because
we are not performing a long word add, the paths in A0 and B0 are not.

To compute an updated metric, choose the largest result of the subtract/add operations.
The MAX instruction puts the updated result in B. Note that all of A is transferred if A1
is the survivor path, which means that B0 holds the path bits that represent the survivor
path. This instruction also reloads the first path metric/path pair for use in updating the
lower state later in the loop.

3-6 Viterbi Decoder Implementation MOTOROLA

Expanding the Viterbi Algorithm

Creating the Branch Metrics

The next instruction is the VSL. VSL is a mnemonic for Viterbi Shift Left, a new
instruction tailored for Viterbi algorithm updates. The action of this instruction is to take
an accumulator a or b, store the mid-register (a1 or b1) in X memory, shift the
accumulator left, append a 0 or 1, as indicated by the instruction arguments, and store
the low register (a0 or b0) in Y memory. The net result is that path bits are updated and
the path metric/path pair stored in memory.

This VSL puts a 0 in the LSB of B0. In this way we store the input bit of this transition
(which is 0 regardless of the path chosen because the input bit is 0 as long as the
destination state is the upper state). Because we are storing recreated encoder bits, this
path string will be a recreation of the encoder input, which is what we want for the
decoder output. Of course, we can only store 16 or 24 bits of the path at a time (16 for
DSP56600 or DSP56300 in 16-bit arithmetic mode, 24 for DSP56300 otherwise).

Next, repeat the operations for the lower state update. Note we subtract and add, rather
than add and subtract, as required by the lower state update. The add instruction
reloads the second path metric/path pair, while the sub instruction increments the path
metric fetch pointer and loads the branch metric from the branch metric table, both for
use in the next loop iteration. The increment of the path metric fetch pointer is a dummy
read into x0 (i.e., x0 is not used). This allows us to use a second parallel move to
increment r5.

The max instruction finds the survivor path metric/path pair for the lower state, and
preloads the path metric/path pair for the next loop iteration. The last VSL instruction
shifts the survivor path left 1 bit, appends a 1 to represent the recreated encoder state for
the lower state, and stores the lower state path metric.

We now iterate this loop by the number of butterflies needed, and exit the macro.

3.4 CREATING THE BRANCH METRICS

To present the branch metric routine, we start with the encoding polynomials. For this
example, we start with the encoding polynomials. We then show how to create the
branch metrics we need (in the order required) to do the butterfly correctly. Recall that
the encoding polynomials are 1+D+D3+D5 and 1+D2+D3+D4+D5. There are 32 states in
the decoder, so we need 32 branch metrics. In general, we would access these metrics in
pairs in the butterfly routine, updating the states in pairs. As noted above, we can save
the work involved in half of these, because our polynomials induce a symmetry in the
branch metrics. By this we mean that the branch metrics for this code have the property
that the upper and lower input branches to any state are complementary.

Expanding the Viterbi Algorithm

Creating the Branch Metrics

MOTOROLA Viterbi Decoder Implementation 3-7

Thus, by using a shifted version of the branch metrics, we only need one branch metric
for each state pair update. This metric is the one that gets subtracted from one path and
added into the other. We need only generate and store 16 branches.

Any given branch will, for a specified input, have one of four values. The four values
will represent how well the decoder input compares to the recreated encoder outputs of
00, 01, 10, 11. For our example, we assume some soft decision input. The decoder input
data is shifted and scaled so that 1 is changed to 16, and 0 is changed to -16. We obtain
two partial branch metrics B0 and B1, where B0 is the partial branch metric for the
encoder polynomial 1+D+D3+D5 output, and B1 is the partial branch metric for the
1+D2+D3+D4+D5 polynomial output. We can then compute the four branches as B0+B1,
B0-B1, -B0+B1, and -B0-B1, corresponding to recreated encoder values of
11, 10, 01, and 00.

The butterfly loop needs the branches in a specific order dictated by the encoding
polynomials. As seen in Figure 2-2, we update states 2i and 2i+1 using states i and i+16.
We only need the 16 branches for the 16 state pairs. The state gives us five of the six
values needed to determine the encoder output. The remaining value can be found by
examining the butterfly loop assembly code. In the loop, note that we subtract the
branch metric first (from the upper branch), then add it to the lower branch. The
butterfly loop is written assuming that the single branch metric value has the correct
sign to be added in the lower branch. This is equivalent to assuming the encoder input
bit is a 1 (for the purposes of computing the branch metric table). We account for this in
the code by choosing positive 16 for 1Õs and minus 16 for 0Õs (as noted in the preceding
paragraph). The resulting recreated encoder outputs for the first 16 states are shown in
the following table.

3-8 Viterbi Decoder Implementation MOTOROLA

Expanding the Viterbi Algorithm

Creating the Branch Metrics

Table 3-1 Recreated Encoder Outputs

The code needed to implement the values in this table appears in Example 3-2.

State Input
Bit

Encoder
Output

Map Encoder Output to
Branch Metric

Branch Metric for Example
Decoder 10 Input

00000 1 11 B0+B1 16 + (-16) = 0

00001 1 01 -B0+B1 (-16) + (-16) = -32

00010 1 10 B0-B1 32

00011 1 00 -B0-B1 0

00100 1 00 -B0-B1 0

00101 1 10 B0-B1 32

00110 1 01 -B0+B1 -32

00111 1 11 B0+B1 0

01000 1 10 B0-B1 32

01001 1 00 -B0-B1 0

01010 1 11 B0+B1 0

01011 1 01 -B0+B1 -32

01100 1 01 -B0+B1 -32

01101 1 11 B0+B1 0

01110 1 00 -B0-B1 0

01111 1 10 B0-B1 32

Expanding the Viterbi Algorithm

Creating the Branch Metrics

MOTOROLA Viterbi Decoder Implementation 3-9

Example 3-2 Find Branch Metrics Code

;*****************BRANCH METRIC MACRO*************************************
; FUNCTION: Input data and generate branch metrics.
; For this decoder, the metric is a scaled
; sum or difference of the real and imag inputs.
; INPUTS:
; r2 should point to the beginning of the branch metric table
; r5 should point to the latest path metric for state 0
; r1 should point to the next input XY data pair
; OUTPUTS:
; Branch metrics are stored at BRX in XY memory
; REGISTERS USED:
; a,b,x01,y01,r1,r2,n2, r2 unchanged (modulo req'd)
;**
;
FindMetrics macro

move l:(r1)+,y ;grab dec input
move #-16,x1 ;sign for real component, 0 sent.
mpy x1,y1,a ;a has 0x partial branch
move #BRY+3,r2 ;storage for generated branch metrics
mac x1,y0,a a,b ;a gets 00 branch
mac -x1,y0,b ;b has 01 branch

;

neg a a,x1 a,y:(r2)+n2 ;mv 00 to x1,11 to a, st 00 in location 3
neg b b,x0 b,y:(r2)+n2 ;mv 01 to x0,10 to b, st 01 in location 6

;***
; AT this point X1 has 00, X0 has 01,
; A1 has 11, B1 has 10, needed for quick storage in Y memory
;***

move x1,y:(r2)+n2 ;store 00 in location 9
move x0,y:(r2)+n2 ;store 01 in location 12
move b,y:(r2)+n2 ;store 10 in location 15
move b,y:(r2)+n2 ;store 10 in location 2
move b,y:(r2)+n2 ;store 10 in location 5
move b,y:(r2)+n2 ;store 10 in location 8
move x0,y:(r2)+n2 ;store 01 in location 11
move x1,y:(r2)+n2 ;store 00 in location 14
move x0,y:(r2)+n2 ;store 01 in location 1
move x1,y:(r2)+n2 ;store 00 in location 4
move a,y:(r2)+n2 ;store 11 in location 7
move a,y:(r2)+n2 ;store 11 in location 10
move a,y:(r2)+n2 ;store 11 in location 13
move a,y:(r2) ;store 11 in location 0. r2-> BRY
endm

3-10 Viterbi Decoder Implementation MOTOROLA

Expanding the Viterbi Algorithm

Creating the Branch Metrics

The FindMetrics macro is for the most part straightforward. We begin by loading the
decoder input data to compute the branch metrics. Next, load the scaling factor, and
multiply to obtain the partial branch metric with one of the inputs. The next line
initializes address register r2 as a pointer to the table location used by state 3, where the
branch metrics are to be stored. We then finish the computation of the branch metric for
a branch with encoder output 00, followed by the metric for 01. With these two metrics,
we begin to load the branch metric table.

We can load the branch metric table in any order. To minimize the number of cycles
needed, we apply a few constraints. First, it is easier if we load the table in some
consistent manner such as using a constant address offset each time. Second, it is
convenient if we end up at the address used by state 0, because then we are initialized
for the butterfly state update. Also, we must finish generating the metric values for 11
and 10. It is most efficient if we can do this in parallel with the moves to load the branch
metric table.

The easiest way to store the branch metrics might be to start at state 15 and count down.
If we do this, it turns out that a stall is unavoidable: we cannot generate all of the
required branch metric values in time to use them with this ordering. Other loading
orders are easy to obtain by using an address register increment that is relatively prime
to the table length (and using a modulo addressing mode to wrap around). For our
table length, any odd number increment will ensure that we cover the entire table with
constant increments. Our first candidate is 3. If we start at state 3, and increment by 3Õs,
we will cover the entire table and end up at the address for state 0. These first three
branch metric values are associated with recreated encoder outputs of 00, 01 and 00.
Because the repeat of 00 gives us time to generate the extra branch metric values with
no stall, we use increments of 3.

We begin by writing the branch metric for state 3. At the same time, we negate A to
compute the metric for branches with encoder output 11, saving the metric for 00 in x1.
For the next write, we negate B to compute the metric for 10, saving the metric for 01 in
x0. We write to the branch metric table at the same time.

What follows are writes to the branch metric table. Using modulo addressing, we
increment the address by 3Õs until the entire table is filled. We write the branch metrics
determined by the encoder polynomials as they appear in Table 3-1.

Finally, note that this code has been constructed so that the address register r2 points to
the beginning of the branch metric table at the end of this routine. Because of this, the
butterfly loop is automatically initialized to load branch metrics by the end of this
routine.

Expanding the Viterbi Algorithm

Storing the Paths

MOTOROLA Viterbi Decoder Implementation 3-11

3.5 STORING THE PATHS

For some applications of the Viterbi algorithm, the paths will not need to be stored. This
occurs when the memory of the encoder (or channel, for maximum likelihood sequence
estimation) is small enough for the paths in the algorithm to merge quickly. In other
situations, this may not be adequate. To clarify the storage process, we introduce the
idea of traceback.

Assume the decoder has been processing data for some time. If we examine the paths
up to the time of the current input, it is not clear what path should be chosen. In fact,
choosing a path to decide what decoder output should correspond to the current input
would lead to poor performance. This is because we do not have all the data we can get.
Because the current encoder input has an effect on the decoder inputs for some time
into the future, future decoder inputs can be used to increase the reliability of current
decoder output decision values. As a result, we introduce delay into the decoder,
waiting for future inputs to be processed before making a decision.

For the Viterbi algorithm, this means that while the current array of paths may not have
reliable decisions about the present, they do contain reliable data about the past. In
practice, there is a traceback depth for the decoder, the number of states we need to look
back before the decision data is assumed to be reliable. For this depth, it is highly likely
that the paths have converged. This means that all current paths have the same data up
to this time in the past. If this depth is less than the register size used for the paths (i.e.,
16 bits for the DSP56600 and the DSP56300 in 16-bit arithmetic mode, 24 bits for
DSP56300 otherwise), we can choose a path and output the most significant bits of the
register as decisions.

If this is not the case, we must make some provision to store the paths. For our example,
a traceback depth of 16 bits is inadequate. A depth of 24 bits is extremely marginal for
this example, while 35 bits is probably more than needed. Hence, we implement
traceback storage. For this example, we actually store paths for the entire sequence
length (assumed to be 168 bits here), and produce the entire output at the end. It should
be easy to modify the code to produce partial output data in stages if desired.

The critical concept in storing paths is to arrange the path data so that we can connect the
paths for consecutive storage times. The path bits of the survivor path bits at the end
must be joined with their preceding path bits. Because we stored the preceding path bits
in memory, we must know where in memory to look for the survivor path. Where in
memory do we look?

To see how this is done, consider an example path in register B0 just after a Viterbi
butterfly update. Assume there are 13 pairs of decoder inputs processed so far.

3-12 Viterbi Decoder Implementation MOTOROLA

Expanding the Viterbi Algorithm

Storing the Paths

Figure 3-1 Stored B0 Path

Note that the current encoder state is part of the path! In retrospect, this must be so, as
both the state (the recreated encoder state) and its path (the potential decoder outputÑ
the recreated encoder input) represent the same data stream. To use this, store the path
byte in a memory location with address defined by the time the path bytes are stored,
offset by the current encoder state. Then, make sure the saved partial path does not
contain the current encoder state. Instead, save the current encoder state part of the path
to be stored the next time we save paths.

To do the traceback, start with the survivor path at the end, and trace the path bits back
in time to recover the decoder output. When we recover the stored path as part of our
traceback, the final bits in that path point to the offset memory location where we need
to read to continue the traceback.

Hence, if we omit the most recent 5 bits of the path, we can potentially store up to 11 bits
of path (assuming 16-bit registers). We have chosen to store 8 in this example because
reconstruction is a little easier if we have data in bytes. There is a trade-off. Storing more
path bits at a time means we donÕt need to store paths as often (fewer instructions
executed, less memory used), but the traceback reconstruction is more difficult because
we have to piece together 11-bit data into 16-bit words.

The code in our example code makes one more assumption. We assume that the data is
sent in a block, and that the transmitter ends the block by 0 filling the encoder. The effect
of 0 filling the encoder is to end everything at state 0. Hence, for traceback, start
everything at state 0.

Bit # 15 8 7 0

1 0 1 0 1 1 1 00 0 0 1 0 0 1 1B0
Encoder stateStored path byte

Expanding the Viterbi Algorithm

Traceback: Obtaining the Decoder Output

MOTOROLA Viterbi Decoder Implementation 3-13

For other codes that do not use this assumption, traceback can either begin at state 0
anyway (relying on the convergence of paths to give the correct output at the traceback
depth) or the decoder can search for the state with the maximum path metric to begin
the traceback.

3.6 TRACEBACK: OBTAINING THE DECODER OUTPUT

This section presents the code needed to obtain the decoder output from the stored path
data. For this example, we have data organized in blocks of 168 bits. Because the encoder
is flushed to the zero state at the end, and the data for all 168 bits is stored, the traceback
can obtain the entire block at once. The most complicated portion of this code is the need
to obtain the pointer to the next previous state from the current path data.

The code listings for storage and traceback appear in Example 3-3 and Example 3-4,
respectively.

3-14 Viterbi Decoder Implementation MOTOROLA

Expanding the Viterbi Algorithm

Traceback: Obtaining the Decoder Output

To store the paths, begin by recalling the path storage address pointer. In the example
code, this is stored in n0. We place copies into r3 (to use as the address pointer for data
writes) and r0 (to update the pointer to the next page at the end of the routine). We then
mask off the 5 LSBs, and proceed to store the paths. We have designed this macro to
process a variable number of states, controlled by the macro argument LPCNT. This
variability will be used in Section 4.

Example 3-3 Partial Path Storage Code Listing

;***********************STORE PARTIAL PATH METRICS MACRO***************
; FUNCTION: The storage is somewhat twisted. The stored paths are current
; up to the most recent input bit, which is NOT convenient for
; traceback. I process the data as follows: I pre
; loaded the path with 6 bits. Thereafter, I process 8 path bits
; so the path has 14 bits. The most significant 8, I save.
; the remaining bits are the current encoder values for that path.
; The 5 lsb's are the current state.
; INPUTS:
; n0 should point to memory where the path bits are to be stored
; r5 should point to the latest path metric for state 0
; OUTPUTS:
; Updated paths storage X memory, n0 points to next path storage
; REGISTERS USED:
; a,b,x1,r0,n0,r3,r5
;***
;
; Store off path data in bytes to avoid overflow in path reg's
;
STOREPATHS macro LPCNT
;

move n0,r3 ;n0 stores path data pointer
move n0,r0
move #>$1f,x1 ;mask for 5 lsb's(NUMENCBITS of 1's)
do LPCNT,_PSTORE1 ;store paths for each state
move y:(r5),b ;grab path
asr #5,b,a ;align bits 5-12 with a1

; (the 8 bits beyond enc)
and x1,b ;mask off 5 lsb's to return to path
move a1,x:(r3)+ ;store 8 ms path bits
move b1,y:(r5)+ ;return 5 ls path bits

_PSTORE1
lua (R4+NUMSTATES),R5 ;r5 points to latest states
lua (r0+NUMSTATES),n0 ;update path data pointer
endm

Expanding the Viterbi Algorithm

Traceback: Obtaining the Decoder Output

MOTOROLA Viterbi Decoder Implementation 3-15

For each path stored, then, we start by reading in the path. We move the path 5 bits to
the right, so that A1 has the byte of path data to store right aligned. We mask off all but
the 5 rightmost bits in B1 to clear the stored path bits. The loop finishes by writing both
the path data to be stored and the updated path for the path metric.

The macro finishes by setting r5 for use in the next butterfly, as well as updating N0 to
point to the next page of stored path data during the next storage interval.

Example 3-4 Traceback Output Path Code Listing

;***********************TRACEBACK OUTPUT PATH MACRO*******************
; FUNCTION: To output the correct data, we begin at the end. We take the
; output path of the survivor state (0), and place its associated
; output path in memory as the last output data byte. Then we use
; bits 3-7 of that data as an offset pointer to the correct traceback
; data of the next previous path data memory. We continue this until
; we have traced the data back to the beginning.
; INPUTS:
; n0 should point to memory where the path bits are to be stored
; r5 should point to the latest path metric for state 0
; OUTPUTS:
; Decoder output data in Y memory
; REGISTERS USED:
; a,b,y,r0,n0,r2,r5
;
;***
;
; Store off path data in bytes to avoid overflow in path Registers
;
TRACEBACK macro
;

move N0,R0 ;path ptr to r0
move #0,n0 ;prep for traceback
move #DECOUT+(NUMINPUTS/8/2),r2 ;point to end to trace data
move y:(r5),b ;recall last path
move #-1,m2 ;r2 now linear
move b1,x:(r0) ;save off last path data
move #$513,x0 ;control word for extract, 16 bit

; move #$501d,x0 ;control word for extract, 24 bit
;
;*****************BEGIN TRACEBACK*****************************
;

IF (EVEN==0)
move x:(r0+n0),a ;recall last path
extractu x0,a,b ;bits 3-7 of a1 point to next data
lua (r0-NUMSTATES),r0 ;dec r0 to next earlier state set
lsl #8,a ;move to upper byte
move b0,n0 ;load as offset for traceback
move a1,y:(r2)- ;save off
ENDIF

;

3-16 Viterbi Decoder Implementation MOTOROLA

Expanding the Viterbi Algorithm

Traceback: Obtaining the Decoder Output

We begin the traceback in Example 3-4 by moving the path storage pointer to r0 and
initializing n0 for its use as an offset. Next we position r2 at the end of the buffer that will
contain the decoder output. Again, this is because we will traceback the path from the
end survivor path to the beginning. For our example, we can start at state 0. Start by
taking the current path for state 0 (r5 points to this) and reading into B. We put r2 in
linear addressing mode, then store the last path (the loop will read it again). Finally, we
load x0 with the control code ($513) to extract the pointer to the next traceback location
from the path.

The next section of code is used if the number of bytes of data is odd. It decodes the last
byte, and places it in the most significant byte of decoder output. As this code is like the
last half of the following do loop, discussion of this code is deferred.

The do loop processes the traceback two bytes at a time. In this way, it can assemble the
decoder output into 16-bit words for more efficient storage. Begin by reading the current
path into A1. Then, extract the pointer to the next (actually previous) path using extract.
Recall the control register contains $513, which means we take bits $13-$17 of A or,
equivalently, bits 3-7 of A1. Note that we can load $501d instead and the program will
work in 24-bit mode, although the example data provided would require 00 appended to
every data symbol to test correctly. As noted above, these most significant bits of the
path byte point to the storage address of the path continuation in the previous ÒpageÓ of
memory. By page, we mean the block of stored path bits for each state. There is one page
written each time we store paths (every 8 decoder input periods).

Next, move r0 to point to the previous page, then move the extracted path pointer bits to
n0 to be used in the next traceback read. We end processing of this least significant byte
by moving it to x1.

do #NUMINPUTS/8/2,TRCBK ;once for each byte pair
move x:(r0+n0),a ;recall last path
extractu x0,a,b ;get ptr to next earlier path
lua (r0-NUMSTATES),r0 ;point r0 to next earlier states
move b0,n0 ;save ptr as offset
move a1,x1 ;save out byte in x1
move x:(r0+n0),a ;do it all again!
extractu x0,a,b
lua (r0-NUMSTATES),r0
move b0,n0
lsl #8,a ;move to upper byte
or x1,a ;or in last byte to get 16 bit word
move a1,y:(r2)- ;store result

TRCBK
endm

Example 3-4 Traceback Output Path Code Listing (Continued)

Expanding the Viterbi Algorithm

Main: Gluing the Pieces Together

MOTOROLA Viterbi Decoder Implementation 3-17

Again, we read the next (previous) path into A1 using r0, which points to the previous
page, and n0, which points to the correct path in that page. We extract the new path
pointer information, update r0 to the next previous page, and move the path pointer to
n0. Move the path data to the upper byte, OR in the lower byte from x1, and move the
resulting word into memory using r2. The loop continues until we have traced back to
the beginning, and y:DECOUT points to the start of the decoder output.

3.7 MAIN: GLUING THE PIECES TOGETHER

The only thing left is to put the pieces together. In Examples 3-5 through 3-7, we present
the main routine. Its function is to initialize registers so everything starts properly, and
to invoke the macros at the needed time.

Example 3-5 begins the Viterbi decoding routine by setting equates for the encoder size
and input data length, and initializing address registers. NUMSTATES is set to the
number of encoder states, which for our example is 32. ENCBITS is the number of bits
used to encode. This includes the input bit as well as the state bits. NoOfAcsButt sets the
number of ACS butterflies for the butterfly loop. For our rate 1/2 code, this is
automatically set to half the number of states. The EVEN flag is used by the assembler to
include an extra half-byte of traceback if the number of input bytes of data is odd.

Example 3-5 Main Viterbi Decoding Routine: Initialization

;***************************MAIN***
;
NUMSTATESequ 32
ENCBITS equ 6 ;most cases=log2(NUMSTATES)+1
NoOfAcsButt equ NUMSTATES/2
NUMINPUTSequ 168
EVEN equ 1-(NUMINPUTS/8)%2 ;EVEN SET TO 1/0 IF NUMINPUTS IS
; EVEN/ODD #BYTES

org p:$400
VITDEC move #NUMSTATES/2-1,m2 ;r2 points to branch metric table

move #>3,n2 ;increment for branch metric storage
move #STATE1,r5 ;r5 points to current state metric
move #STATE2,r4 ;r4 points to updated state metric
move #NUMSTATES*2-1,m4 ;both modulo to flip loc each sym
move #NUMSTATES*2-1,m5
move #NUMSTATES/2,n5 ;input metrics spacing for each butterfly
move #PATHOUT,n0 ;n0 points to storage for output paths
move #-1,m3 ;set linear mode, traceback ptr

;
move #INDATA,r1 ;r1 points to input data

;

3-18 Viterbi Decoder Implementation MOTOROLA

Expanding the Viterbi Algorithm

Main: Gluing the Pieces Together

Next, we begin the executable code. The first two lines initialize address registers m2
and n2 so that r2 addressing wraps around and increments by 3ÕsÑboth for branch
metric storage. The next 5 lines initialize address registers r4 and r5 to wrap around for
path metric/path storage to begin them pointing to the correct places in the storage
table. Offset register n5 is set to access path metrics spaced halfway apart in the storage
table.

The initialization finishes by pointing n0 to the path storage table start, making sure r3
is in linear mode for traceback, and pointing r1 to the input data. Note that the r1
addressing mode is not set. We assume that an outside calling routine does this, and
permit circular input buffers if desired.

These next two sections do much of the decoding work. The first loop processes
ENCBITS of input data. We process 1 pair of decoder inputs for each iteration of the
macros FindMetrics and ACS. This preprocessing loads ENCBITS-1 of data into the
paths. Thereafter, we process the decoder input pairs in groups of eight, producing 8
path bits for each state. For every 8 decoder input pairs processed, we invoke the
STOREPATHS macro to store the paths.

Example 3-6 Main Viterbi Decoding Routine: Patch Metric Update

;
;***********************PREPARATION LOOP*************************
; This loop iterates by the number of bits used in the
; encoder to pre load the bit decisions. Thereafter,
; the paths are updated and stored off in bytes. We need
; the preload bits so that the stored path metrics point
; correctly to their previous paths for traceback
;**
;

do #ENCBITS-1,PRELP ;once for each encoder bit
;

FindMetrics
ACS

PRELP
;*****************MAIN LOOP--PROCESS BYTES OF DATA*****************

do #NUMINPUTS/8-1,DATALP ;process bytes of output
do #8,SYMLP ;8 bits per byte

;
FindMetrics
ACS

SYMLP
STOREPATHS#NUMSTATES

DATALP

Expanding the Viterbi Algorithm

Memory Organization

MOTOROLA Viterbi Decoder Implementation 3-19

By preloading ENCBITS-1 and storing the leftmost eight every time we store paths, we
ensure that the paths always have (ENCBITS-1)+8 bits at the time we store paths.The
extra ENCBITS-1 bits are, as noted above, the current state, and are kept till the next
path store time to allow us to traceback. The main loop processes all but the last
8-ENCBITS+1 sets of decoder input data.

Example 3-7 shows the final processing for the data block. At this time, we have
processed all but the last byte, i.e., 8 bits less the ENCBITS-1 processing we did in
preprocessing. This means we have 3 bits of data left to process. After processing the
last decoder input, the TRACEBACK macro is invoked to obtain the decoder output.
The decoded data is memory at y:DECOUT, in 16-bit word form.

3.8 MEMORY ORGANIZATION

Example 3-8 shows all memory organization except the input data defines used to test
the code. The first reserved spaces are dedicated to the storage for the path metrics (in X
memory) and their respective paths (in Y memory). Note that these must be collocated.
For this code, we initialized the metrics for that state 00 has a large path metric, and the
rest are 0. We do not initialize the path metrics in executable code! This allows the
decoder to operate on data over multiple invocations if desired. If the decoder is
operating on independent data blocks, each started assuming the encoder starts in the 0
state, then this memory will have to be initialized accordingly. Another alternative in
this case would be to modify the butterfly loop in the preprocessor to use the fact that
the encoder starts in the 0 state. This option is explored in Section 4.

Example 3-7 Main Viterbi Decoding Routine: Termination and Traceback

;
;********POSTPROCESSING,LAST INFO BYTE ********************************
;
; ENCBITS PREPROCESSED, SO WE HAVE 8-ENCBITS BITS LEFT.
; FOR THIS EXAMPLE, WE HAVE 3INPUTS LEFT TO PROCESS
;**
;
; THE LAST THREE BITS------
;

do #8-ENCBITS+1,FLSH1;process last 3 bits to get last byte
;

FindMetrics
ACS

FLSH1
;*******Traceback the path data to obtain the decoder output**********

TRACEBACK
FIN nop

3-20 Viterbi Decoder Implementation MOTOROLA

Expanding the Viterbi Algorithm

Memory Organization

The path metric/path memory must start on a 0 mod 2*NUMSTATES boundary for the
modulo addressing to work properly. In addition, the Branch metric storage BRY must
start on a 0 mod NUMSTATES/2 boundary to operate correctly. Finally, the storage of
the input data must be paired in X and Y memory, because we do long moves to get the
decoder input data pairs into the branch metric calculation.

Example 3-8 Memory Organization Code

;**********************MEMORY ORGANIZATION****************************
; MOST OF THE MEMORY LOCATION IS IMPORTANT--THE FIRST TWO
; LABELS OF THE X AND Y DATA MEMORY ARE PAIRED AND MUST
; BE CO LOCATED (AT THE SAME ADDRESSES). IN ADDITION, STATE1
; AND STATE2 MUST BE LOCATED ON A 0 MOD 2*NUMSTATES BOUNDARY,
; BRY MUST BE ON A 0 MOD NUMSTATES/2 BOUNDARY.
; X and Y memory for input data must be paired --GOOD LUCK.....
;***
;

org x:$0
STATE1 DC $0ff,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0

DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0
STATE2 DC $0ff,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0

DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0
;
PATHOUT DS NUMSTATES*(NUMINPUTS/8+1)
INDATA ;THIS DATA ENCODES
;$1234,$5678,$9abc,$4973,$7925,$3491,$ad43,$ff21,$7ebb,$0100,$00 ;....
;I didnÕt include the test data in this listing...

org y:$0
PATH1 DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0

DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0
PATH2 DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0

DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0
BRY DSM NUMSTATES/2
DECOUT DS NUMINPUTS/8

org y:@cvs(y,INDATA)
YDATA DC $a000,$a000,$a000,$6000;....

SECTION 4

ALGORITHMIC EXTENSIONS

4-2 Viterbi Decoder Implementation MOTOROLA

Algorithmic Extensions

4.1 Introduction .4-3
4.2 Allowing More General Branch Metrics .4-3
4.2.1 Modify Viterbi Butterfly .4-4
4.2.2 Modify Branch Metric Generation .4-6
4.3 Starting from 0: The Pre ACS Macro .4-8
4.4 Collapsing the States. .4-10
4.5 Main: Putting the Pieces Back Together4-12

Algorithmic Extensions

Introduction

MOTOROLA Viterbi Decoder Implementation 4-3

4.1 INTRODUCTION

This section shows how to adjust the code of Section 3 to include several enhancements.
Generalized branch metrics are allowed, as well as optimizing the code to reduce the
computations when data occurs in blocks.

The code in this section introduces several modifications to the code discussed in
Section 3. Section 4.2 modifies the handling of branch metrics to allow nonsymmetrical
branch metrics. Section 4.3 and Section 4.4 develop two additional macros useful if the
data is blocked and the encoder is periodically forced through a known state. We put all
of these routines together to produce a modified Viterbi algorithm decoder that has
autonormalized path metrics and efficient coding for blocked data. Note that a complete
listing of this code appears in Appendix B.

4.2 ALLOWING MORE GENERAL BRANCH METRICS

The code introduced so far is efficient for algorithms that have special branch metrics. In
particular, the branch metrics are assumed to be inverses of each other and flipped
between state pairs. Although this is true for many popular codes in use today, it is not
necessarily the case. If a polynomial set is specified where one of the encoding
polynomials does not have a tap at one end, the branch metrics lose some of their
symmetry. A simple example is the polynomial set (1,1+D), whose trellis appears in
Figure 4-1.

Figure 4-1 Polynomial (1,1+D) Trellis

Note that the input branches to State 0 are not complements of each other! We might
accommodate this with a fractional branch offset to make branch 00 and branch 01
negatives, but note that the offset for the lower state would have to be different. Another
approach is to compute separate branch offsets for the upper and lower state updates.
This requires a different version of the branch metric generation as well as the butterfly
loop. We consider modified code for each of these functions in the examples that follow.

00

+

0

1

11

01

10

S0

S0

4-4 Viterbi Decoder Implementation MOTOROLA

Algorithmic Extensions

Allowing More General Branch Metrics

4.2.1 Modify Viterbi Butterfly

Begin modification with the butterfly loop. The code from Section 3 reads in the branch
metric from y memory near the loop end (the y:(r0)+,y1 that appears two lines
from _P_NextStage). The easiest way to get two branch metrics is to do long reads on the
branch metrics. For the code in Section 3, however, finding the space to do the extra
branch read is harder. Most of the data movement is tightly controlled and cannot be
moved in the code without disrupting the data flow. Instead, we can make use of the
pipeline stall in the Viterbi butterfly loop. The modified code appears in Example 4-1.

Example 4-1 Modified Viterbi Butterfly

;*******************viterbi add, compare, select butterfly macro***
; FUNCTION: Update path metrics/paths for the Viterbi algorithm by
; doing an add,compare,select update for state pairs.
; INPUTS:
; r2 should point to the beginning of the branch metric table
; r2 should point to the beginning of the branch metric table
; r5 should point to the latest path metric for state 0
; r4 should point to the storage location for updated state 0
; n5 should offset addresses by NUMSTATES/2
; OUTPUTS:
; Updated path metrics/paths stored in XY memory
; REGISTERS USED:
; a,b,y01,r2,r4,r5,n5 r2 unchanged (modulo req'd)
; Registers:
; r5, pointer to the path metric/path table, arranged as
; x: path metric, y: path,states ordered assuming
; bits shift right to left.
; r4, pointer to the output path metric/path table
; r0, pointer to the branch metric table, arranged
; as x:C, y:D, CD,CD,CD, etc.
;
; SA------NSA
; \ C /
; D \ /
; \/
; /\
; D / \
; / \
; SB------NSB
; C

Algorithmic Extensions

Allowing More General Branch Metrics

MOTOROLA Viterbi Decoder Implementation 4-5

This code is almost identical to the butterfly code in Section 3, with the following
differences. The first executable line is a long move to register Y. This allows us to grab
two branch metrics at the same time. For this example, we show both branch metrics
being added to the path metrics to update the states. Line 9 in the loop (the assembly line
move l:(r2)+,y) is a long read of two more branch metrics. This is an extra line of code,
but it executes in the same number of cycles as the original code because it takes the
place of a pipeline stall. Finally, note that address register 5 is still incremented, but
without a dummy read into a register.

The loop uses the same branch metrics for both upper and lower path metric updates.
This is what is needed for Example 4-1, where we still have some symmetry because
both encoding polynomials have a tap on the input bit. If this is not the case, the code can
accommodate other conditions. A more general setup is to uncomment the long move
that reads additional branch metrics in line 4 of the loop. This line will also take the place
of a pipeline stall, and so does not increase the number of cycles needed to execute the
butterfly.

;***
;
ACS macro
;
; move #BRY,r2 ;r2 points to branch metrics

move l:(r2)+,y ;get first branch metric
move l:(r5)+n5,a ;load 1st metric/path pair

;
do #NoAcs,_P_NextStage ;update each state
add y0,a l:(r5)-n5,b ;sum pt,br met,get next pair
add y1,b ;update metric
max a,b l:(r5)+n5,a ;pick max, reload 1st pair

; move l:(r2)+,y ;load next branch metrics
vsl b,0,l:(r4)+ ;save surivior, end top half
add y1,a l:(r5)-n5,b ;sum pt,br,reload next pair
add y0,b (r5)+ ;sum again,inc pt mt read ptr
max a,b l:(r5)+n5,a ;pick max, load next pair
move l:(r2)+,y ;load next branch metrics
vsl b,1,l:(r4)+ ;write survivor,end 2nd half

_P_NextStage
nop ;needed to separate do loop ends
endm

Example 4-1 Modified Viterbi Butterfly (Continued)

4-6 Viterbi Decoder Implementation MOTOROLA

Algorithmic Extensions

Allowing More General Branch Metrics

4.2.2 Modify Branch Metric Generation

The branch metric generation needs modification also. Example 4-2 shows the user a
different motivation for noncomplementary branch metrics. In this example, we use
convolutional code from Section 3, but take the path metric for state 0 and subtract it
from all branch metrics. This is a computationally inexpensive way to automatically
normalize the path metrics so that we need not worry about arithmetic saturation of
path metrics when decoding very long streams of data. It does, however, destroy the
symmetry of the branch metrics.

Example 4-2 Modified Branch Metric Generation Code

;*****************BRANCH METRIC MACRO*************************************
; FUNCTION: Input data and generate branch metrics. This function
; subtracts the path metric for state 0 from all branch metrics
; to provide autonormaliztion. For this decoder, the metric is a scaled
; sum or difference of the real and imag inputs.
; INPUTS:
; r2 should point to the beginning of the branch metric table
; r5 should point to the latest path metric for state 0
; r1 should point to the next input XY data pair
; OUTPUTS:
; Branch metrics are stored at BRX in XY memory
; REGISTERS USED:
; a,b,x01,y01,r1,r2,r5, r5 unchanged,r2 unchanged (modulo req'd)
;**
;
FindMetrics macro

move x:(r5),a ;st. metric scaling, read last st. 0
neg a l:(r1)+,y ;negate metric|grab dec input
move #-16,x1 ;sign for real component, upper br.
mac x1,y1,a a,b ;comp 0x partial br. path mt. to
move y1,x0 ;mv real input to x0
mac x1,y0,a a,y1 ;a gets 00 br. y1 gets 0x partial br
subl a,b b,x0 ;a has 00 br, b has 11 br, save path
tfr y1,a a,y1 ;swap 0x and 00 to compute 01 branch
mac -x1,y0,a b,x1 ;a gets 01 br
tfr x0,b b,y0 ;swap path metric,11 branch to y0
subl a,b y1,x0 ;b gets 10 br, x0 has copy of 00 br.

;***
; AT this point, X is configured with br 11|00, y with 00|11, and
; AB with 01|10, BA with 10|01 all needed for quick storage in XY
; memory.
;***

Algorithmic Extensions

Allowing More General Branch Metrics

MOTOROLA Viterbi Decoder Implementation 4-7

For this example, we are using the same code as in Section 3 to make the unnormalized
branch metrics symmetrical. For easy storage in memory, we want to generate metric
pairs. Each pair should have the values needed for the upper and lower branch metric
value needed for the butterfly. For this example, the branch metric for encoder output 00
will be paired with the branch metric value for 11 and the value for 01 paired with the
value for 10. All branch metrics will have the previous path metric for state 0 subtracted
from them. This means that after the Viterbi butterfly update, each path metric value
will have been normalized. It can be shown that this limits the worst case path metric
values to be no more than 12 times the maximum branch metric value (for this code
example).

The branch metric macro begins by reading in the last path metric for state 0. It then
negates that value in accumulator a and reads the decoder input into register y. The data
in y is assumed to be in the form y1:y0 mapped to real:imaginary data input. Next, the
scaling factor -16 is placed in register x1.

The mac instruction finds a partial branch metric by multiplying the real data by the
scaling factor and adding the result to the negated path metric value in a. We also save
the negated path metric value to b for later use.

Next, we move the real decoder input from y1 to x0. The next mac instruction multiplies
imaginary input by the scaling factor and adds it to a. The accumulator a now has the
normalized branch metric for encoder 00 outputs. At the same time, the partial branch
metric that was in a is saved in y1 for later use.

move x,l:(r2)+ ;store 11 in location 0.
move ab,l:(r2)+ ;store 01 in location 1
move ba,l:(r2)+ ;store 10 in location 2
move y,l:(r2)+ ;store 00 in location 3
move y,l:(r2)+ ;store 00 in location 4
move ba,l:(r2)+ ;store 10 in location 5
move ab,l:(r2)+ ;store 01 in location 6
move x,l:(r2)+ ;store 11 in location 7
move ba,l:(r2)+ ;store 10 in location 8
move y,l:(r2)+ ;store 00 in location 9
move x,l:(r2)+ ;store 11 in location 10
move ab,l:(r2)+ ;store 01 in location 11
move ab,l:(r2)+ ;store 01 in location 12
move x,l:(r2)+ ;store 11 in location 13
move y,l:(r2)+ ;store 00 in location 14
move ba,l:(r2)+ ;store 10 in location 15 r2-> BRX
endm

Example 4-2 Modified Branch Metric Generation Code (Continued)

4-8 Viterbi Decoder Implementation MOTOROLA

Algorithmic Extensions

Starting from 0: The Pre ACS Macro

The subl a,b instruction does a shift left and subtract operation on b and a to obtain the
branch metric for encoder 11 outputs. The negated path metric value is saved in x0. The
transfer instruction and its parallel move swap y1 with a to save the 00 branch metric
and place the partial branch metric for the next computation.

The next mac instruction scales the imaginary part and subtracts it from the partial
branch metric to obtain the branch metric for encoder 01 outputs. The 11 branch metric is
saved in register x1. The negated path metric is placed in b, and the 11 branch metric is
move to y0.

The final subl instruction shift left and subtracts the negated path metric from the 01
branch to get the 10 branch metric in b. The 00 branch metric is copied to x0.

After all these moves, we find that register x1:x0 contains branches 11:00, register y1:y0
contains branches 00:11, and a1:b1 has branches 01:10. Note that we can access
accumulators as ab or ba to get branches 01:10 or 10:01. All we have to do now is to place
the branch metric pairs in memory to correspond with their states for the Viterbi
butterfly loop.

Unlike the case in Section 3, our branch metric generation allows us to use a simple
memory placement scheme. We begin with the memory location for state 0, and
increment through the states until the r2 address pointer rolls over to 0 after location 15
(r2 is set to be a modulo 16 address pointer). Because we have all possible needed branch
metric pairs in some register, we just code each move with the branch metric pair for that
state.

4.3 STARTING FROM 0: THE PRE ACS MACRO

For data that is coded in packets, it is not unusual for the encoder to start in a known
state. The easiest case is when the encoder begins each data packet starting in state zero.
This is what is assumed for this example. For this case, the beginning trellis is shown in
Figure 4-1. Notably, the number of states to be updated changes from 2 to 4 to 8, etc.,
doubling until the full 32 states is reached. Until that time, we have fewer computations
to do because the number of states is smaller and because no comparison of competing
branches is needed until 32 states of the trellis are being used. We can reduce the
computation needed for a packet by treating the first five decoder inputs separately.

The code to do this appears in the PreACS macro in Example 4-3. The first two moves
save the state address pointers to be restored at the routineÕs end. Next the branch
metrics are loaded into the accumulators b and a. Finally, the path metric/path pair is
loaded into x.

Algorithmic Extensions

Starting from 0: The Pre ACS Macro

MOTOROLA Viterbi Decoder Implementation 4-9

The do loop processes each state update. The branches are added to the state to obtain
the state updates. The second of these adds also loads in the next path metric/path pair
for the next loop iteration. The VSL instructions store the updated path metrics, and the
move loads the next branch metrics.

After the loop, we double n5 (used to vary the number of loop iterations), restore r4 and
r5 to swap path metric read/write addresses, and reinitialize the branch metric pointer
for use by the branch metric update routine.

Example 4-3 Pre-ACS Macro

;*******************************;PreACS***************************************
; FUNCTION: Update path metrics/paths for the Viterbi algorithm by
; ACS butterfly from assumed 0 state to start, and double
; the number of states on each invocation until the full
; trellis is used. This routine CANNOT be used unless the
; encoder is starting from an all 0's state. Note this
; means it cannot be used if the data is a continuation
; of a previously processed data stream. Use the ACS macro
; instead. However, for packetised data, or other data that
; assumes the data starts with the encoder 0 filled, this
; routine saves cycles, AND only state 0 needs to be initialised
; before starting the decode.
; INPUTS:
; r2 should point to the beginning of the branch metric table
; r5 should point to the latest path metric for state 0
; r4 should point to the storage location for updated state 0
; n5 should be the number of input states/2 to process
; n5 is doubled each time this macro is invoked
; OUTPUTS:
; Updated path metrics/paths stored in XY memory
; REGISTERS USED:
; a,b,y01,r2,r3,n3,r4,r5,n5 r2 unchanged (modulo req'd)
; Registers:
; r5, pointer to the path metric/path table, arranged as
; x: path metric, y: path,states ordered assuming
; bits shift right to left.
; r4, pointer to the output path metric/path table
; r0, pointer to the branch metric table, arranged
; as x:C, y:D, CD,CD,CD, etc.
;
; SA------NSA
; \ C
; D \
; \
; \
; \
; \
; SB NSB
;

4-10 Viterbi Decoder Implementation MOTOROLA

Algorithmic Extensions

Collapsing the States

4.4 COLLAPSING THE STATES

For codes that 0 fill the encoder to create an end of data block, we can reduce the number
of cycles needed to finish the Viterbi decoder processing. Example 4-4 assumes the coder
ends a block by 0 filling the encoder. For the decoder, this means that the last 5 inputs to
a block are known beforehand to take the upper state. There are two cycle-saving
consequences to this. First, we need not update the lower state in the butterflies. Second,
each of the last five inputs creates only half the number of states from the previous input.
For the last input, we update state 0 only, giving us a single starting point for traceback.
The code appears in Example 4-4.

;***
;
PreACSmacro
;
; move#BRY,r2 ;r2 points to branch metrics

mover5,r3 ;save r5 to init r4 later
mover4,n3 ;save r4 to init r5 later
movel:(r2)+,ba;get first branch metrics
movel:(r5)+,y ;load 1st metric/path pair

;
do n5,_P_NextStageupdate each state
add y,a ;update metric
add y,b l:(r5)+,y;updt met, ld nxt pair
vsl a,0,l:(r4)+;end top half

;
vsl b,1,l:(r4)+;end 2nd half
movel:(r2)+,ba;ld br met

_P_NextStage
moven5,b ;recall loop count
asl b n3,r5 ;mult it by 2
mover3,r4
moveb,n5 ;storage for loop count
move#BRY,r2 ;reinit branch ptr
endm

Example 4-3 Pre-ACS Macro (Continued)

Algorithmic Extensions

Collapsing the States

MOTOROLA Viterbi Decoder Implementation 4-11

Example 4-4 The ACSFlush Macro

;***********************ACSFlush Macro****************************
; FUNCTION: This routine is very similar to the ACS macro, except that
; the encoding shift register is now flushing back to 0.
; This means that only the upper paths are taken, halving
; the number of states we need to update. The ACS code is
; modified so that we don't compute the lower paths. In
; addition, state storage is modified so that survivor
; paths are stored in consecutive memory locations. Survivors
; are even states on the first pass, then every fourth state,etc.
; INPUTS:
; r2 should point to the beginning of the branch metric table
; r5 should point to the latest path metric for state 0
; r4 should point to the storage location for updated state 0
; n5 should be the number of input states/2 to process
; n5 is halved each time this macro is invoked
; OUTPUTS:
; Updated path metrics/paths stored in XY memory
; REGISTERS USED:
; a,b,y01,r2,n2,r3,n3,r4,r5,n5 r2 unchanged (modulo req'd)
;
; SA------NSA
; C /
; /
; /
; D/
; /
; /
; SB
;
;***
ACSFlush macro
;** move #BRY,r2 ;r2 points to branch metrics

move r5,r3 ;save r5 to init r4 later
move r4,n3 ;save r4 to init r5 later
move l:(r2)+n2,y ;get first branch metrics
move l:(r5)+n5,a ;load 1st metric/path pair
do n5,_NextStage ;update each state
add y0,a l:(r5)-n5,b ;updt met,load next pair
add y1,b l:(r2)+n2,y ;updt met,ld nxt br met
max a,b (r5)+ ;sel surv,save met,inc st ptr
move l:(r5)+n5,a ;ld next pair
vsl b,0,l:(r4)+ ;end 2nd half

_NextStage
move n5,b ;recall flush count, loop count
asr b n2,a ;divide it by 2,prep double branch jump
move n3,r5
move b,n5 ;storage for flush count
asl a (r2)-n2 ;reinit branch ptr
move r3,r4
move a,n2 ;next pass, skip more branches
endm

4-12 Viterbi Decoder Implementation MOTOROLA

Algorithmic Extensions

Main: Putting the Pieces Back Together

We have placed a comment at the beginning, moving the branch metric table address to
r2. Since this is done in the FindMetrics routine, we donÕt actually need to execute this,
but it is included as a reminder that r2 needs to be set properly. The remainder of this
routine is like the ACS butterfly, except that parts are removed, and the number of
iterations varies.

We store the beginning values of r4 and r5 so that we can restore them at the end,
swapped with each other. Because the number of loop iterations varies, we donÕt get the
automatic swapping that the ACS macro has. The first branch metrics are fetched, and
the updated count value is stored in memory. We then load the first path metric/path
pair.

The loop is quite similar to the ACS except we have eliminated unneeded operations. We
add a branch metric and load the next path metric/path pair (for the lower path). We
then add a branch metric and read the branch metrics for the next loop iteration. Taking
the MAX of the accumulators chooses the survivor path metric/path pair, and the path
metric read pointer is incremented for the next loop in parallel. The move loads the path
metric/path pair for the next loop. The VSL completes the current state update for the
upper state.

Note that the state storage pointer is incremented only once, even though we only
update the upper state. This means that state 2 will be written at the address normally
used for state 1, state 4 at the address used for state 2, etc. The next invocation of the
ACSFlush will read the data correctly, because the read pointer increment, r5 is halved
for each invocation of this macro. During the next invocation, we will only have states 0,
4, 8, etc. These are exactly the states that are possible when the encoder is being 0 filled.

To end this macro, we restore r4 and r5 to the desired values, swapping old and update
memories as needed. The loop count is read from n5, halved, and restored, so that we
process half as many states on the next loop invocation.

4.5 MAIN: PUTTING THE PIECES BACK TOGETHER

There are a number of changes to the main program that are required for these new
macros to operate properly. The code for MAIN appears in the following example.

Algorithmic Extensions

Main: Putting the Pieces Back Together

MOTOROLA Viterbi Decoder Implementation 4-13

Example 4-5 Main Program Code Changes

;***************************MAIN***
;
NUMSTATESequ 32
ENCBITS equ 6 ;most cases=log2(NUMSTATES)+1
NoAcs equ NUMSTATES/2
NUMINPUTSequ 168
EVEN equ 1-(NUMINPUTS/8)%2 ;EVEN SET TO 1/0 IF NUMINPUTS IS
; EVEN/ODD #BYTES

org p:$400
VITDEC move #NUMSTATES/2-1,m2 ;r2 points to branch metric table

move #BRX,r2
move #STATE1,r5 ;r5 points to current state metric
move #STATE2,r4 ;r4 points to updated state metric
move #NUMSTATES*2-1,m4 ;both modulo to flip locations each sym
move #NUMSTATES*2-1,m5
move #>1,n5 ;ctr/input metrics spacing for each butterfly

; move #NUMSTATES/2,n5 ;input metrics spacing for each butterfly
move #PATHOUT,n0 ;n0 points to storage for output paths
move #-1,m3 ;set linear mode, traceback ptr
move #>1,n2

;
move #INDATA,r1 ;r1 points to input data

;
;***********************PREPARATION LOOP*************************
; This loop iterates by the number of bits used in the
; encoder to pre load the bit decisions. Thereafter,
; the paths are updated and stored off in bytes. We need
; the preload bits so that the stored path metrics point
; correctly to their previous paths for traceback.
;**
;

do #ENCBITS-1,PRELP ;preload decisions/trellis start
;

FindMetrics
PreACS

; ACS
PRELP

move #NUMSTATES/2,n5 ;n5 now serves as offset between fetch
; states
;
;*****************MAIN LOOP--PROCESS BYTES OF DATA*****************

do #NUMINPUTS/8-2,DATALP;process bytes of output
do #8,SYMLP ;8 bits per byte

;
FindMetrics
ACS

SYMLP
STOREPATHS#NUMSTATES

DATALP

4-14 Viterbi Decoder Implementation MOTOROLA

Algorithmic Extensions

Main: Putting the Pieces Back Together

;********POSTPROCESSING,LAST 2 INFO BYTES & FLUSH ENCODER BACK TO 0****
;
; THESE SETUPS SHOULD ACCOMODATE ENCODERS OF 5 TO 8 BITS.
; ENCBITS-1 PREPROCESSED, SO WE HAVE 16-ENCBITS+1 BITS LEFT.
; WE DO ENCODER FLUSHING FOR #ENCBITS-1 BITS. SO WE HAVE
; (16-ENCBITS+1) - ENCBITS+1 DO DO BEFORE FLUSHING.
; NEXT, WE PROCESS THE ENCODER FLUSH BITS, STOPPING TO STORE
; PATHS AS NEEDED. WE STORE AFTER 8 BITS PROCESSED SO THIS MEANS
; STORE PATHS AFTER 16-2*ENCBITS+2 (from nonflush) +8-(16-2*ENCBITS+2)
; (these are the additional flush bits needed before storing paths).
; FINALLY, WE FINISH OUT THE DATA. THE BITS REMAINING ARE:
; 16-ENCBITS+1-(16-2*ENCBITS+2)-(8-(16-2*ENCBITS+2))
; = 8-ENCBITS.
;
; FOR THIS EXAMPLE, WE NONFLUSH PROCESS
; 6 MORE BITS, THEN FLUSH 2, STORE PATH, THEN FLUSH
; THE LAST THREE TO STATE 0.
; LAST 6 NONFLUSH BITS---
;**

do #16-(2*ENCBITS)+2,LAST6
FindMetrics
ACS

;
LAST6
;
; ENCODER FLUSH-----
;

move #>NUMSTATES/2,n5 ;flush, process 16,8, 4, then 2,
; then 1 state

do #8-(16-(2*ENCBITS)+2),FLSH;process 3 of last five bits to get
; next to last byte

FindMetrics
ACSFlush

; ACS
FLSH

STOREPATHS#NUMSTATES/8
;
; FLUSH THE LAST THREE BITS------
;

do #8-ENCBITS+1,FLSH3 ; do last 3 bits to get last byte
;

FindMetrics
ACSFlush

; ACS
FLSH3
;

TRACEBACK
;
FINISH nop

Example 4-5 Main Program Code Changes (Continued)

Algorithmic Extensions

Main: Putting the Pieces Back Together

MOTOROLA Viterbi Decoder Implementation 4-15

To make the changes to the MAIN program code, we begin as we did in Section 3, by
initializing the address registers. R2 is still used to address branch metrics. Registers r4
and r5 address the states for path metric storage. The differences needed for the
initialization code are to set n5 to 1 (needed for tracking the number of states in the
PreAcs code), and n2 is set to 1. This is different from the code in Section 3 for two
reasons. First, the branch metric generation is different, and second, using n2 to update
register r2 for branch metric storage is no longer required. Instead, we use n2 to change
the addresses to read branch metrics for the ACSFlush routine.

Next, we do ENCBITS-1 iterations of input processing to preload the path storage
registers. This is different because we use the PreACS macro instead of the ACS macro.
Using the PreACS macro means that the code uses the starting encoder 0 state to reduce
execution cycles as well as to avoid the need of initializing the path metric storage for all
the states.

The next major piece of code is the nested do loops that process bytes of decoder input
and store off the resulting paths. This code is identical to the code in Section 3, except
that we process one less byte of data.

The end processing is more complicated because there are two subprocesses occurring at
the same time and their endings are not in phase. One process is the storing of the path
data in bytes as the path storage registers fill up. The second process is the ACSFlush
processing, which collapses the trellis states back to 0.

For this example, start with 168 decoder inputs. We preprocess five inputs, and then
process 19*8=152 more inputs in bytes using the nested loops. We have 11 decoder
inputs left to process. We need to do 8 more to get the next byte, but after processing
6 inputs, we have to change from using the ACS macro to using the ACSFlush macro
(used to collapse states for the last five inputs).

Accordingly, we process the first 6 of the last 11 decoder inputs using the ACS macro.
We then process the next two decoder inputs using the ACSFlush macro. Now we have
processed eight more decoder inputs, and can store off the path data using the
STOREPATHS macro. We then finish processing the last three decoder inputs using the
ACSFlush macro. The final path data is in the collapsed state (as it was in the code in
Section 3), and is access in the TRACEBACK macro as before. After doing the traceback
using the TRACEBACK macro of Section 3, the decoder is done at the FINISH label.

4-16 Viterbi Decoder Implementation MOTOROLA

Algorithmic Extensions

Main: Putting the Pieces Back Together

SECTION 5

SUMMARY

5-2 Viterbi Decoder Implementation MOTOROLA

Summary

5.1 Summary .5-3
5.2 Conclusions .5-3
5.3 Program Listings .5-4

Summary

Summary

MOTOROLA Viterbi Decoder Implementation 5-3

5.1 SUMMARY

This application report began with an explanation of the Viterbi algorithm in Section 2,
introduced a basic Viterbi decoder in Section 3, and offered some enhancements to the
decoding assembly code in Section 4. The explanations in Section 2 and Section 3 are
detailed enough for the ideas behind the code to be understood. The goal is to make it
easy to take and modify this code to produce efficient code for any desired application of
the Viterbi algorithm.

We chose a nontrivial industry standard code as our example, and there are some
statistics that are worth noting. Table 5-1 presents some notable statistics for code
presented in this note. In the table, we compare the basic Viterbi decoder code of
Section 3 with the basic code in Section 4. The basic code requires about 215 clock cycles
per decoder input to decoder the data. As an example, this means that at a received data
rate of 13,350 per second (the IS-136 rate if all six slots in a frame are voice data to be
decoded) 2.87 MIPS are required.

If we use generalized branch metrics, the numbers increase, because the branch metric
calculation is more complicated. Note, however, that they lower again as the Pre ACS
and ACSFlush routines are included. Once all the enhancements of Section 4 are
included, the computational load drops to 2.81 MIPS, more than 3% below what the rate
would be if we just used the generalized branch metrics.

5.2 CONCLUSIONS

In conclusion, note that the relative improvement is dependent on the length of the data
packet. Shorter packets show greater improvement. For example, an encoded voice data
slot in IS-136 uses a packet size of only 89 decoder inputs instead of our example 168. For
packets of this size, the percent change is 4.8%Ñlarge enough to make the extra code
worth considering.

5-4 Viterbi Decoder Implementation MOTOROLA

Summary

Program Listings

Table 5-1 Viterbi Decoder Code Statistics

Another statistic worth noting is the program memory required by each program. The
basic Viterbi decoder code in Section 3 takes 178 program words, and the code in
Section 4 with all enhancements added takes 311. The large increase is mostly due to the
unrolling of some loops at the end, required to phase the ACSFlush and STOREPATHS
macros correctly. Notably, the amount of program space required for either routine is
quite small, and may not be a large consideration for most systems.

5.3 PROGRAM LISTINGS

Finally, note that there are three appendices to this application report. Each appendix
contains a program listing for the program as described on one of the sections of this
manual.

¥ Appendix A contains a listing for the complete code discussed in Section 3.

¥ Appendix B contains a complete listing of the code discussed in Section 4.

¥ Appendix C contains a complete listing of a 24-bit version of the Section 4 code,
suitable for implementation on a DSP56300 DSP operating in 24-bit arithmetic
mode.

Code Used Total Clock
Cycles

Clock Cycles per
Information Bit

MIPS at 13,350
Data Rate

%
change

Basic Viterbi 36127 215.04 2.87 Ñ

Viterbi with
generalized
branch metrics

36668 218.26 3.31 +1.5%

+ACSFlush 36065 214.67 2.87 -0.172%

+Pre ACS 35459 211.07 2.81 -1.85%

APPENDIX A

BASIC ALGORITHM PROGRAM LISTING

A-2 Viterbi Decoder Implementation MOTOROLA

Basic Algorithm Program Listing

A.1 VITERBI ALGORITHM PROGRAM LISTING A-3

Basic Algorithm Program Listing

MOTOROLA Viterbi Decoder Implementation A-3

A.1 VITERBI ALGORITHM PROGRAM LISTING

This appendix contains the complete program listing for a 16-bit implementation of the
Viterbi algorithm, as presented in Section 3 of this manual.

A-4 Viterbi Decoder Implementation MOTOROLA

Basic Algorithm Program Listing

Example A-1 Basic 16-Bit Implementation of a Viterbi Decoder

OPT mex
;***********************VITERBI DECODER***********************************
; THIS ROUTINE IMPLEMENTS A CONVOLUTIONAL DECODER USING THE VITERBI ALG.
; IT IS OPTIMIZED FOR SPEED, WHICH MEANS THAT EVERY ALU REGISTER
; AND ALL OF THE R REGISTERS ARE USED. A SIGNIFICANT AMOUNT OF
; THESE CAN BE FREED BY STORING AND REUSING REGISTERS BETWEEN THE
; FINDMETRICS ROUTINES AND THE ACS,ACSFlush ROUTINES.
; INPUT is in INDATA real in x imag in y. OUTPUT begins at y:DECOUT
;*****************BRANCH METRIC MACRO*************************************
; FUNCTION: Input data and generate branch metrics.
; For this decoder, the metric is a scaled
; sum or difference of the real and imag inputs.
; INPUTS:
; r2 should point to the beginning of the branch metric table
; r5 should point to the latest path metric for state 0
; r1 should point to the next input XY data pair
; OUTPUTS:
; Branch metrics are stored at BRX in XY memory
; REGISTERS USED:
; a,b,x01,y01,r1,r2,n2, r2 unchanged (modulo req'd)
;**
FindMetrics macro

move l:(r1)+,y ;grab dec input
move #-16,x1 ;sign for real component, 0 sent.
mpy x1,y1,a ;a has 0x partial branch
move #BRY+3,r2 ;storage for generated branch metrics
mac x1,y0,a a,b ;a gets 00 branch
mac -x1,y0,b ;b has 01 branch

;

neg a a,x1 a,y:(r2)+n2 ;mv 00 to x1,11 to a, st 00 in location 3
neg b b,x0 b,y:(r2)+n2 ;mv 01 to x0,10 to b, st 01 in location 6

;***
; AT this point X1 has 00, X0 has 01,
; A1 has 11, B1 has 10, needed for quick storage in Y memory
;***

move x1,y:(r2)+n2 ;store 00 in location 9
move x0,y:(r2)+n2 ;store 01 in location 12
move b,y:(r2)+n2 ;store 10 in location 15
move b,y:(r2)+n2 ;store 10 in location 2
move b,y:(r2)+n2 ;store 10 in location 5
move b,y:(r2)+n2 ;store 10 in location 8
move x0,y:(r2)+n2 ;store 01 in location 11
move x1,y:(r2)+n2 ;store 00 in location 14
move x0,y:(r2)+n2 ;store 01 in location 1
move x1,y:(r2)+n2 ;store 00 in location 4
move a,y:(r2)+n2 ;store 11 in location 7
move a,y:(r2)+n2 ;store 11 in location 10
move a,y:(r2)+n2 ;store 11 in location 13
move a,y:(r2) ;store 11 in location 0. r2-> BRY
endm

Basic Algorithm Program Listing

MOTOROLA Viterbi Decoder Implementation A-5

;
;*******************viterbi add, compare, select butterfly macro***
; FUNCTION: Update path metrics/paths for the Viterbi algorithm by
; doing an add,compare,select update for state pairs.
; INPUTS:
; r2 should point to the beginning of the branch metric table
; r5 should point to the latest path metric for state 0
; r4 should point to the storage location for updated state 0
; n5 should offset addresses by NUMSTATES/2
; OUTPUTS:
; Updated path metrics/paths stored in XY memory
; REGISTERS USED:
; a,b,x0,y1,r2,r4,r5,n5 r2 unchanged (modulo req'd)
; Registers:
; r5, pointer to the path metric/path table, arranged as
; x: path metric, y: path,states ordered assuming
; bits shift right to left.
; r4, pointer to the output path metric/path table
; r0, pointer to the branch metric table, arranged
; as x:C, y:D, CD,CD,CD, etc.
;
; SA------NSA
; \ C /
; D \ /
; \/
; /\
; D / \
; / \
; SB------NSB
; C
;***
ACS macro
;
; move #BRY,r2 ;r2 points to branch metrics

move y:(r2)+,y1 ;get first branch metric
move l:(r5)+n5,a ;load 1st metric/path pair

;
do #NoOfAcsButt,_P_NextStage ;update each state
sub y1,a l:(r5)-n5,b ;sub pt,br met,get next pair
add y1,b ;update metrics
max a,b l:(r5)+n5,a ;pick max,reload 1st pair
vsl b,0,l:(r4)+ ;store survivor,end top half
add y1,a l:(r5)-n5,b ;add pt,br met,reload next pair
sub y1,b x:(r5)+,x0 y:(r2)+,y1 ;inc st ptr,ld nxt br met
max a,b l:(r5)+n5,a ;pick max met,load next pair
vsl b,1,l:(r4)+ ;st survivor,end 2nd half

_P_NextStage
nop ;needed to separate do loop ends
endm

Example A-1 Basic 16-Bit Implementation of a Viterbi Decoder (Continued)

A-6 Viterbi Decoder Implementation MOTOROLA

Basic Algorithm Program Listing

;***********************STORE PARTIAL PATH METRICS MACRO***************
; FUNCTION: The storage is somewhat twisted. The stored paths are current
; up to the most recent input bit, which is NOT convenient for
; traceback. I process the data as follows: I pre
; loaded the path with 6 bits. Thereafter, I process 8 path bits
; so the path has 14 bits. The most significant 8, I save.
; the remaining bits are the current encoder values for that path.
; The 5 lsb's are the current state.
; INPUTS:
; n0 should point to memory where the path bits are to be stored
; r5 should point to the latest path metric for state 0
; OUTPUTS:
; Updated paths storage X memory, n0 points to next path storage
; REGISTERS USED:
; a,b,x1,r0,n0,r3,r5
;***
; Store off path data in bytes to avoid overflow in path reg's
;
STOREPATHS macro LPCNT
;

move n0,r3 ;n0 stores path data pointer
move n0,r0
move #>$1f,x1 ;mask for 5 lsb's(NUMENCBITS of

1's)
do LPCNT,_PSTORE1 ;store paths for each state
move y:(r5),b ;grab path
asr #5,b,a ;align bits 5-12 with a1

; (the 8 bits beyond enc)
and x1,b ;mask off 5 lsb's to return to

path
move a1,x:(r3)+ ;store 8 ms path bits
move b1,y:(r5)+ ;return 5 ls path bits

_PSTORE1
lua (R4+NUMSTATES),R5 ;r5 points to latest states
lua (r0+NUMSTATES),n0 ;update path data pointer
endm

;

Example A-1 Basic 16-Bit Implementation of a Viterbi Decoder (Continued)

Basic Algorithm Program Listing

MOTOROLA Viterbi Decoder Implementation A-7

;***********************TRACEBACK OUTPUT PATH MACRO*******************
; FUNCTION: To output the correct data, we begin at the end. We take the
; output path of the survivor state (0), and place its associated
; output path in memory as the last output data byte. Then we use
; bits 3-7 of that data as an offset pointer to the correct traceback
; data of the next previous path data memory. We continue this until
; we have traced the data back to the begining.
; INPUTS:
; n0 should point to memory where the path bits are to be stored
; r5 should point to the latest path metric for state 0
; OUTPUTS:
; Decoder output data in Y memory
; REGISTERS USED:
; a,b,y,r0,n0,r2,r5
;
;***
; Store off path data in bytes to avoid overflow in path reg's
;
TRACEBACK macro
;

move N0,R0 ;path ptr to r0
move #0,n0 ;prep for traceback
move #DECOUT+(NUMINPUTS/8/2),r2 ;point to end to trace data
move y:(r5),b ;recall last path
move #-1,m2 ;r2 now linear
move b1,x:(r0) ;save off last path data
move #$513,x0 ;control word for extract

;
;******************************BEGIN TRACEBACK*****************************

IF (EVEN==0)
move x:(r0+n0),a ;recall last path
extractu x0,a,b ;bits 3-7 of a1 point to next data
lua (r0-NUMSTATES),r0 ;dec r0 to next earlier state set
lsl #8,a ;move to upper byte
move b0,n0 ;load as offset for traceback
move a1,y:(r2)- ;save off
ENDIF

;
do #NUMINPUTS/8/2,TRCBK ;once for each byte pair
move x:(r0+n0),a ;recall last path
extractu x0,a,b ;get ptr to next earlier path
lua (r0-NUMSTATES),r0 ;point r0 to next earlier states
move b0,n0 ;save ptr as offset
move a1,x1 ;save out byte in x1
move x:(r0+n0),a ;do it all again!
extractu x0,a,b
lua (r0-NUMSTATES),r0
move b0,n0
lsl #8,a ;move to upper byte
or x1,a ;or in last byte to get 16 bit word
move a1,y:(r2)- ;store result

TRCBK
endm

Example A-1 Basic 16-Bit Implementation of a Viterbi Decoder (Continued)

A-8 Viterbi Decoder Implementation MOTOROLA

Basic Algorithm Program Listing

;***************************MAIN***
NUMSTATESequ 32
ENCBITS equ 6 ;most cases=log2(NUMSTATES)+1
NoOfAcsButtequ NUMSTATES/2
NUMINPUTSequ 168
EVEN equ 1-(NUMINPUTS/8)%2 ;EVEN SET TO 1/0 IF NUMINPUTS IS
; EVEN/ODD #BYTES

org p:$400
VITDEC move #NUMSTATES/2-1,m2 ;r2 points to branch metric table

move #>3,n2 ;increment for branch metric storage
move #STATE1,r5 ;r5 points to current state metric
move #STATE2,r4 ;r4 points to updated state metric
move #NUMSTATES*2-1,m4 ;both modulo to flip loc each sym
move #NUMSTATES*2-1,m5
move #NUMSTATES/2,n5 ;input metrics spacing for each butter-

fly
move #PATHOUT,n0 ;n0 points to storage for output paths
move #-1,m3 ;set linear mode, traceback ptr
move #INDATA,r1 ;r1 points to input data

;***********************PREPARATION LOOP*************************
; This loop iterates by the number of bits used in the
; encoder to pre load the bit decisions. Thereafter,
; the paths are updated and stored off in bytes. We need
; the preload bits so that the stored path metrics point
; correctly to their previous paths for traceback
;**

do #ENCBITS-1,PRELP ;once for each encoder bit
;

FindMetrics
ACS

PRELP
;*****************MAIN LOOP--PROCESS BYTES OF DATA*****************

do #NUMINPUTS/8-1,DATALP ;process bytes of output
do #8,SYMLP ;8 bits per byte

;
FindMetrics
ACS

SYMLP
STOREPATHS#NUMSTATES

DATALP
;********POSTPROCESSING,LAST INFO BYTE ********************************
;
; ENCBITS-1 PREPROCESSED, SO WE HAVE 8-ENCBITS+1 BITS LEFT.
; FOR THIS EXAMPLE, WE HAVE 3 INPUTS LEFT TO PROCESS
;**
; THE LAST THREE BITS------

do #8-ENCBITS+1,FLSH1 ;process last 3 bits to get last byte
FindMetrics
ACS

FLSH1
;*******Traceback the path data to obtain the decoder output**********

TRACEBACK
FIN nop

Example A-1 Basic 16-Bit Implementation of a Viterbi Decoder (Continued)

Basic Algorithm Program Listing

MOTOROLA Viterbi Decoder Implementation A-9

;**********************MEMORY ORGANIZATION****************************
; MOST OF THE MEMORY LOCATION IS IMPORTANT--THE FIRST TWO
; LABELS OF THE X AND Y DATA MEMORY ARE PAIRED AND MUST
; BE CO LOCATED (AT THE SAME ADDRESSES). IN ADDITION, STATE1
; AND STATE2 MUST BE LOCATED ON A 0 MOD 2*NUMSTATES BOUNDARY,
; X and Y memory for input data must be paired --GOOD LUCK.....
;***
;***
;

org x:$0
STATE1 DC $0ff,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0

DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0
STATE2 DC $0ff,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0

DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0
;
PATHOUT DS NUMSTATES*(NUMINPUTS/8+1)
INDATA ;THIS DATA ENCODES
$1234,$5678,$9abc,$4973,$7925,$3491,$ad43,$ff21,$7ebb,$0100,$20

DC $a000,$a000,$a000,$6000,$6000,$a000,$a000,$6000
DC $6000,$6000,$6000,$6000,$6000,$a000,$a000,$6000
DC $a000,$6000,$a000,$6000,$a000,$6000,$a000,$6000
DC $a000,$a000,$6000,$6000,$6000,$a000,$a000,$a000
DC $a000,$a000,$a000,$a000,$a000,$a000,$a000,$a000
DC $a000,$6000,$6000,$a000,$a000,$a000,$a000,$a000
DC $a000,$a000,$a000,$a000,$a000,$6000,$6000,$a000
DC $6000,$a000,$6000,$a000,$6000,$6000,$6000,$6000
DC $a000,$a000,$6000,$6000,$a000,$a000,$a000,$6000
DC $a000,$6000,$a000,$6000,$6000,$a000,$6000,$a000
DC $a000,$a000,$6000,$a000,$a000,$a000,$a000,$6000
DC $6000,$6000,$6000,$a000,$6000,$6000,$6000,$6000
DC $6000,$6000,$a000,$a000,$a000,$a000,$6000,$6000
DC $a000,$a000,$6000,$a000,$a000,$a000,$a000,$a000
DC $a000,$6000,$6000,$a000,$a000,$a000,$a000,$a000
DC $6000,$a000,$6000,$a000,$6000,$6000,$a000,$a000
DC $6000,$6000,$6000,$a000,$a000,$6000,$a000,$6000
DC $6000,$6000,$a000,$a000,$a000,$6000,$a000,$a000
DC $a000,$a000,$6000,$6000,$6000,$a000,$a000,$6000
DC $6000,$a000,$6000,$a000,$6000,$a000,$a000,$a000
DC $a000,$a000,$6000,$6000,$a000,$6000,$a000,$6000

;***

Example A-1 Basic 16-Bit Implementation of a Viterbi Decoder (Continued)

A-10 Viterbi Decoder Implementation MOTOROLA

Basic Algorithm Program Listing

;***
;

org y:$0
PATH1 DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0

DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0
PATH2 DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0

DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0
BRY DSM NUMSTATES/2
DECOUT DS NUMINPUTS/8

org y:@cvs(y,INDATA)
YDATA DC $a000,$a000,$a000,$6000,$a000,$6000,$a000,$6000

DC $a000,$6000,$a000,$a000,$6000,$6000,$a000,$6000
DC $a000,$a000,$6000,$a000,$6000,$6000,$6000,$a000
DC $6000,$6000,$6000,$6000,$6000,$6000,$a000,$6000
DC $6000,$6000,$6000,$a000,$a000,$a000,$6000,$a000
DC $a000,$a000,$6000,$6000,$6000,$a000,$6000,$a000
DC $6000,$6000,$6000,$6000,$a000,$6000,$a000,$a000
DC $6000,$6000,$a000,$6000,$6000,$6000,$a000,$6000
DC $a000,$6000,$6000,$a000,$a000,$6000,$a000,$a000
DC $a000,$a000,$a000,$6000,$a000,$a000,$6000,$6000
DC $6000,$a000,$6000,$a000,$a000,$6000,$a000,$6000
DC $6000,$6000,$a000,$a000,$6000,$a000,$6000,$a000
DC $a000,$6000,$6000,$a000,$a000,$6000,$a000,$a000
DC $a000,$a000,$a000,$a000,$a000,$6000,$a000,$6000
DC $a000,$6000,$a000,$6000,$6000,$6000,$6000,$6000
DC $a000,$a000,$a000,$a000,$a000,$6000,$6000,$a000
DC $a000,$a000,$a000,$6000,$a000,$a000,$6000,$a000
DC $6000,$6000,$a000,$6000,$6000,$6000,$a000,$a000
DC $6000,$6000,$a000,$a000,$6000,$a000,$a000,$6000
DC $a000,$6000,$6000,$6000,$6000,$a000,$a000,$a000
DC $a000,$a000,$6000,$a000,$6000,$6000,$6000,$6000
end

Example A-1 Basic 16-Bit Implementation of a Viterbi Decoder (Continued)

APPENDIX B

EXTENDED ALGORITHM PROGRAM
LISTING

B-2 Viterbi Decoder Implementation MOTOROLA

Extended Algorithm Program Listing

B.1 16-BIT ENHANCED VITERBI DECODER PROGRAM LISTINGB-3

Extended Algorithm Program Listing

MOTOROLA Viterbi Decoder Implementation B-3

B.1 16-BIT ENHANCED VITERBI DECODER PROGRAM LISTING

This appendix contains the complete 16-bit program listing for Section 4. The code in
this section introduces several modifications to the code discussed in Section 3.
Generalized branch metrics are allowed, as well as the optimization of the code that
reduces the computations when data occurs in blocks.

Example B-1 Extended Algorithm Program Listing

OPT mex
;****************56600**VITERBI DECODER***********************************
; THIS ROUTINE IMPLEMENTS A CONVOLUTIONAL DECODER USING THE VITERBI ALG. IT IS
; OPTIMIZED FOR SPEED, WHICH MEANS THAT EVERY ALU REGISTER AND ALL OF THE R REGISTERS
; ARE USED. A SIGNIFICANT AMOUNT OF THESE CAN BE FREED BY STORING AND REUSING
; REGISTERS BETWEEN THE FINDMETRICS ROUTINES AND THE ACS,ACSFlush ROUTINES.
; INPUT is at INDATA: real in x imag in y. OUTPUT begins at y:DECOUT
; GLOBAL REGISTER USE: a,b,x,y,r012345,n025,m245(are set to a modulo mode)
;*****************BRANCH METRIC MACRO*************************************
; FUNCTION: Input data and generate branch metrics. This function
; subtracts the path metric for state 0 from all branch metrics
; to provide autonormaliztion. For this decoder, the metric is a scaled
; sum or difference of the real and imag inputs.
; INPUTS:
; r2 should point to the beginning of the branch metric table
; r5 should point to the latest path metric for state 0
; r1 should point to the next input XY data pair
; OUTPUTS:
; Branch metrics are stored at BRX in XY memory
; REGISTERS USED:
; a,b,x01,y01,r1,r2,r5, r5 unchanged,r2 unchanged (modulo req'd)
;*****************FINDMETRICS MACRO**
FindMetrics macro

move x:(r5),a ;st. metric scaling, read last st. 0
neg a l:(r1)+,y ;negate metric|grab dec input
move #-16,x1 ;sign for real component, upper br.
mac x1,y1,a a,b ;comp 0x partial br. path mt. to
move y1,x0 ;mv real input to x0
mac x1,y0,a a,y1 ;a gets 00 br. y1 gets 0x partial br
subl a,b b,x0 ;a has 00 br, b has 11 br, save path
tfr y1,a a,y1 ;swap 0x and 00 to compute 01 branch
mac -x1,y0,a b,x1 ;a gets 01 br
tfr x0,b b,y0 ;swap path metric,11 branch to y0
subl a,b y1,x0 ;b gets 10 br, x0 has copy of 00 br.

B-4 Viterbi Decoder Implementation MOTOROLA

Extended Algorithm Program Listing

;***
; AT this point, X is configured with br 11|00, y with 00|11, and AB
; with 01|10, BA with 10|01 all needed for quick storage in XY memory
;***

move x,l:(r2)+ ;store 11 in location 0.
move ab,l:(r2)+ ;store 01 in location 1
move ba,l:(r2)+ ;store 10 in location 2
move y,l:(r2)+ ;store 00 in location 3
move y,l:(r2)+ ;store 00 in location 4
move ba,l:(r2)+ ;store 10 in location 5
move ab,l:(r2)+ ;store 01 in location 6
move x,l:(r2)+ ;store 11 in location 7
move ba,l:(r2)+ ;store 10 in location 8
move y,l:(r2)+ ;store 00 in location 9
move x,l:(r2)+ ;store 11 in location 10
move ab,l:(r2)+ ;store 01 in location 11
move ab,l:(r2)+ ;store 01 in location 12
move x,l:(r2)+ ;store 11 in location 13
move y,l:(r2)+ ;store 00 in location 14
move ba,l:(r2)+ ;store 10 in location 15 r2-> BRX
endm

Example B-1 Extended Algorithm Program Listing (Continued)

Extended Algorithm Program Listing

MOTOROLA Viterbi Decoder Implementation B-5

;*******************viterbi add, compare, select butterfly macro***
; FUNCTION: Update path metrics/paths for the Viterbi algorithm by
; doing an add,compare,select update for state pairs.
; INPUTS:
; r2 should point to the beginning of the branch metric table
; r5 should point to the latest path metric for state 0
; r4 should point to the storage location for updated state 0
; n5 should offset addresses by NUMSTATES/2
; OUTPUTS:
; Updated path metrics/paths stored in XY memory
; REGISTERS USED:
; a,b,y01,r2,r4,r5,n5 r2 unchanged (modulo req'd)
; Registers:
; r5, pointer to the path metric/path table, arranged as
; x: path metric, y: path,states ordered assuming
; bits shift right to left.
; r4, pointer to the output path metric/path table
; r0, pointer to the branch metric table, arranged
; as x:C, y:D, CD,CD,CD, etc.
;
; SA------NSA
; \ C /
; D \ /
; \/
; /\
; D / \
; / \
; SB------NSB
; C
;***
;
ACS macro
;
; move #BRY,r2 ;r2 points to branch metrics

move l:(r2)+,y ;get first branch metric
move l:(r5)+n5,a ;load 1st metric/path pair

;
do #NoAcs,_P_NextStage ;update each state
add y0,a l:(r5)-n5,b ;sum pt,br met,get next pair
add y1,b ;update metric
max a,b l:(r5)+n5,a ;pick max, reload 1st pair
vsl b,0,l:(r4)+ ;save surivior, end top half
add y1,a l:(r5)-n5,b ;sum pt,br,reload next pair
add y0,b (r5)+ ;sum again,inc pt mt read ptr
max a,b l:(r5)+n5,a ;pick max, load next pair
move l:(r2)+,y ;load next branch metrics
vsl b,1,l:(r4)+ ;write survivor,end 2nd half

_P_NextStage
nop ;needed to separate do loop ends
endm

Example B-1 Extended Algorithm Program Listing (Continued)

B-6 Viterbi Decoder Implementation MOTOROLA

Extended Algorithm Program Listing

;*******************************;PreACS***************************************
; FUNCTION: Update path metrics/paths for the Viterbi algorithm by ACS butterfly
; from assumed 0 state to start, and double the number of states on each invocation
; until the full trellis is used. This routine CANNOT be used unless the encoder is
; starting from an all 0's state. Note this means it cannot be used if the data is
; a continuation of a previously processed data stream. Use the ACS macro instead. ;
However, for packetised data, or other data that assumes the data starts with the
; encoder 0 filled, this routine saves cycles, AND only state 0 needs to be
; initialised before starting the decode.
; INPUTS:
; r2 should point to the beginning of the branch metric table
; r5 should point to the latest path metric for state 0
; r4 should point to the storage location for updated state 0
; n5 should be the number of input states/2 to process
; n5 is doubled each time this macro is invoked
; OUTPUTS:
; Updated path metrics/paths stored in XY memory
; REGISTERS USED:
; a,b,y01,r2,r3,n3,r4,r5,n5 r2 unchanged (modulo req'd)
; Registers:
; r5, pointer to the path metric/path table, arranged as
; x: path metric, y: path,states ordered assuming
; bits shift right to left.
; r4, pointer to the output path metric/path table
; r0, pointer to the branch metric table, arranged
; as x:C, y:D, CD,CD,CD, etc.
; SA------NSA
; \ C
; D \
; \
; \
; \
; \
; SB NSB
;***
PreACS macro
; move #BRY,r2 ;r2 points to branch metrics

move r5,r3 ;save r5 to init r4 later
move r4,n3 ;save r4 to init r5 later
move l:(r2)+,ba ;get first branch metrics
move l:(r5)+,y ;load 1st metric/path pair
do n5,_P_NextStage update each state
add y,a ;update metric
add y,b l:(r5)+,y ;updt met, ld nxt pair
vsl a,0,l:(r4)+ ;end top half
vsl b,1,l:(r4)+ ;end 2nd half
move l:(r2)+,ba ;ld br met

_P_NextStage
move n5,b ;recall loop count
asl b n3,r5 ;mult it by 2
move r3,r4
move b,n5 ;storage for loop count
move #BRY,r2 ;reinit branch ptr
endm

Example B-1 Extended Algorithm Program Listing (Continued)

Extended Algorithm Program Listing

MOTOROLA Viterbi Decoder Implementation B-7

;***********************ACSFlush Macro****************************
; FUNCTION: This routine is very similar to the ACS macro, except that
; the encoding shift register is now flushing back to 0.
; This means that only the upper paths are taken, halving
; the number of states we need to update. The ACS code is
; modified so that we don't compute the lower paths. In
; addition, state storage is modified so that survivor
; paths are stored in consecutive memory locations.
; Survivors are even states on the first pass, then
; every fourth state, etc.
; INPUTS:
; r2 should point to the beginning of the branch metric table
; r5 should point to the latest path metric for state 0
; r4 should point to the storage location for updated state 0
; n5 should be the number of input states/2 to process
; n5 is halved each time this macro is invoked
; OUTPUTS:
; Updated path metrics/paths stored in XY memory
; REGISTERS USED:
; a,b,y01,r2,n2,r3,n3,r4,r5,n5 r2 unchanged (modulo req'd)
;
; SA------NSA
; C /
; /
; /
; D/
; /
; /
; SB
;***
ACSFlush macro
;** move #BRY,r2 ;r2 points to branch metrics

move r5,r3 ;save r5 to init r4 later
move r4,n3 ;save r4 to init r5 later
move l:(r2)+n2,y ;get first branch metrics
move l:(r5)+n5,a ;load 1st metric/path pair

;
do n5,_NextStage ;update each state
add y0,a l:(r5)-n5,b ;updt met,load next pair
add y1,b l:(r2)+n2,y ;updt met,ld nxt br met
max a,b (r5)+ ;sel surv,save met,inc st ptr
move l:(r5)+n5,a ;ld next pair
vsl b,0,l:(r4)+ ;end 2nd half

_NextStage
move n5,b ;recall flush count, loop count
asr b n2,a ;divide it by 2,prep double branch jump
move n3,r5
move b,n5 ;storage for flush count
asl a (r2)-n2 ;reinit branch ptr
move r3,r4
move a,n2 ;next pass, skip more branches
endm

Example B-1 Extended Algorithm Program Listing (Continued)

B-8 Viterbi Decoder Implementation MOTOROLA

Extended Algorithm Program Listing

;***********************STORE PARTIAL PATH METRICS MACRO***************
; FUNCTION: The storage is somewhat twisted. The stored paths are
; current up to the most recent input bit, which is NOT
; convenient for traceback. As a result, I process the data as
; follows: I preloaded the path with 6 bits. Thereafter, I
; process 8 path bits so the path has 14 bits. The most
; significant 8, I save. The remaining bits are the current
; encoder values for that path. The 5 lsb's are the current
; state.
; INPUTS:
; n0 should point to memory where the path bits are to be stored
; r5 should point to the latest path metric for state 0
; OUTPUTS:
; Updated paths storage X memory, n0 points to next path storage
; REGISTERS USED:
; a,b,y1,r0,n0,r3,r5
;***
;
; Store off path data in bytes to avoid overflow in path reg's
;
STOREPATHS macro LPCNT
;

move n0,r3 ;n0 stores path data pointer
move n0,r0
move #>$1f,y1 ;mask for 5 lsb's(NUMENCBITS-1 of 1's)
do LPCNT,_PSTORE1 ;store paths for each state
move y:(r5),b ;grab path
asr #5,b,a ;align bits 5-12 w/ a1 (8 bits beyond enc)
and y1,b ;mask off 5 lsb's to return to path
move a1,x:(r3)+ ;store 8 ms path bits
move b1,y:(r5)+ ;return 5 ls path bits

_PSTORE1
lua (R4+NUMSTATES),R5 ;r5 points to latest states

lua (r0+NUMSTATES),n0 ;update path data pointer
endm

Example B-1 Extended Algorithm Program Listing (Continued)

Extended Algorithm Program Listing

MOTOROLA Viterbi Decoder Implementation B-9

;***********************TRACEBACK OUTPUT PATH MACRO*******************
; FUNCTION: To output the correct data, we begin at the end. We take
; the output path of the survivor state (0), and place its
; associated output path in memory as the last output data
; byte. Then we use bits 3-7 of that data as an offset pointer
; to the correct traceback data of the next previous path data
; memory. We continue this until we have traced the data back
; to the begining.
; INPUTS:
; n0 should point to memory where the path bits are to be stored
; r5 should point to the latest path metric for state 0
; OUTPUTS:
; Decoder output data in Y memory
; REGISTERS USED:
; a,b,y,r0,n0,r2,r5
;
;***
; Store off path data in bytes to avoid overflow in path reg's
TRACEBACK macro
;

move N0,R0 ;path ptr to r0
move #0,n0 ;prep for traceback
move #DECOUT+(NUMINPUTS/8/2),r2 ;point to end of output buffer
move y:(r5),b ;recall last path
move #-1,m2 ;r2 now linear
move b1,x:(r0) ;save off last path data
move #$513,y0 ;control word for extract

;
;*****************BEGIN TRACEBACK*****************************

IF (EVEN==0)
move x:(r0+n0),a ;recall last path
extractu y0,a,b ;bits 3-7 of a1 point to next data
lua (r0-NUMSTATES),r0 ;dec r0 to next earlier path set
lsl #8,a ;move to upper byte
move b0,n0 ;load as offset for traceback
move a1,y:(r2)- ;save off
ENDIF

;
do #NUMINPUTS/8/2,TRCBK ;once for each byte pair
move x:(r0+n0),a ;recall last path
extractu y0,a,b ;get ptr to next earlier path
lua (r0-NUMSTATES),r0 ;point r0 to next earlier states
move b0,n0 ;save ptr as offset
move a1,y1 ;save out byte in x1
move x:(r0+n0),a ;do it all again!
extractu y0,a,b
lua (r0-NUMSTATES),r0
move b0,n0
lsl #8,a ;move to upper byte
or y1,a ;or in last byte to get 16 bit word
move a1,y:(r2)- ;store result

TRCBK
endm

Example B-1 Extended Algorithm Program Listing (Continued)

B-10 Viterbi Decoder Implementation MOTOROLA

Extended Algorithm Program Listing

;***************************MAIN***
;
NUMSTATESequ 32
ENCBITS equ 6 ;most cases=log2(NUMSTATES)+1
NoAcs equ NUMSTATES/2
NUMINPUTSequ 168
EVEN equ 1-(NUMINPUTS/8)%2 ;EVEN SET TO 1/0 IF NUMINPUTS IS
; EVEN/ODD #BYTES

org p:$400
VITDEC move #NUMSTATES/2-1,m2 ;r2 points to branch metric table

move #BRX,r2
move #STATE1,r5 ;r5 points to current state metric
move #STATE2,r4 ;r4 points to updated state metric
move #NUMSTATES*2-1,m4 ;both modulo to flip locations each sym
move #NUMSTATES*2-1,m5
move #>1,n5 ;ctr/input metrics spacing for each butterfly

; move #NUMSTATES/2,n5 ;input metrics spacing for each butterfly
move #PATHOUT,n0 ;n0 points to storage for output paths
move #-1,m3 ;set linear mode, traceback ptr
move #>1,n2

;
move #INDATA,r1 ;r1 points to input data

;
;***********************PREPARATION LOOP*************************
; This loop iterates by the number of bits used in the
; encoder to pre load the bit decisions. Thereafter,
; the paths are updated and stored off in bytes. We need
; the preload bits so that the stored path metrics point
; correctly to their previous paths for traceback.
;**
;

do #ENCBITS-1,PRELP ;preload decisions/trellis start
;

FindMetrics
PreACS

; ACS
PRELP

move #NUMSTATES/2,n5 ;n5 now serves as offset between fetch
; states
;
;*****************MAIN LOOP--PROCESS BYTES OF DATA*****************

do #NUMINPUTS/8-2,DATALP;process bytes of output
do #8,SYMLP ;8 bits per byte

;
FindMetrics
ACS

SYMLP
STOREPATHS#NUMSTATES

DATALP

Example B-1 Extended Algorithm Program Listing (Continued)

Extended Algorithm Program Listing

MOTOROLA Viterbi Decoder Implementation B-11

;********POSTPROCESSING,LAST 2 INFO BYTES & FLUSH ENCODER BACK TO 0****
;
; THESE SETUPS SHOULD ACCOMODATE ENCODERS OF 5 TO 8 BITS.
; ENCBITS-1 PREPROCESSED, SO WE HAVE 16-ENCBITS+1 BITS LEFT.
; WE DO ENCODER FLUSHING FOR #ENCBITS-1 BITS. SO WE HAVE
; (16-ENCBITS+1) - ENCBITS+1 DO DO BEFORE FLUSHING.
; NEXT, WE PROCESS THE ENCODER FLUSH BITS, STOPPING TO STORE
; PATHS AS NEEDED. WE STORE AFTER 8 BITS PROCESSED SO THIS MEANS
; STORE PATHS AFTER 16-2*ENCBITS+2 (from nonflush) +8-(16-2*ENCBITS+2)
; (these are the additional flush bits needed before storing paths).
; FINALLY, WE FINISH OUT THE DATA. THE BITS REMAINING ARE:
; 16-ENCBITS+1-(16-2*ENCBITS+2)-(8-(16-2*ENCBITS+2))
; = 8-ENCBITS.
;
; FOR THIS EXAMPLE, WE NONFLUSH PROCESS
; 6 MORE BITS, THEN FLUSH 2, STORE PATH, THEN FLUSH
; THE LAST THREE TO STATE 0.
; LAST 6 NONFLUSH BITS---
;**

do #16-(2*ENCBITS)+2,LAST6
FindMetrics
ACS

;
LAST6
;
; ENCODER FLUSH-----
;

move #>NUMSTATES/2,n5 ;flush, process 16,8, 4, then 2,
; then 1 state

do #8-(16-(2*ENCBITS)+2),FLSH;process 3 of last five bits to get
; next to last byte

FindMetrics
ACSFlush

; ACS
FLSH

STOREPATHS#NUMSTATES/8
;
; FLUSH THE LAST THREE BITS------
;

do #8-ENCBITS+1,FLSH3 ; do last 3 bits to get last byte
;

FindMetrics
ACSFlush

; ACS
FLSH3
;

TRACEBACK
;
FINISH nop

Example B-1 Extended Algorithm Program Listing (Continued)

B-12 Viterbi Decoder Implementation MOTOROLA

Extended Algorithm Program Listing

;**********************MEMORY ORGANIZATION****************************
; MOST OF THE MEMORY LOCATION IS IMPORTANT--THE FIRST TWO
; LABELS OF THE X AND Y DATA MEMORY ARE PAIRED AND MUST
; BE CO LOCATED (AT THE SAME ADDRESSES). IN ADDITION, STATE1
; AND STATE2 MUST BE LOCATED ON A 0 MOD 2*NUMSTATES BOUNDARY,
; X and Y memory for input data must be paired --GOOD LUCK.....
;***
;

org x:$0
STATE1 DC $0ff,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0

DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0
STATE2 DC $0ff,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0

DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0
BRX DSM NUMSTATES/2
;
PATHOUT DS NUMSTATES*(NUMINPUTS/8+1)
INDATA ;THIS DATA ENCODES
$1234,$5678,$9abc,$4973,$7925,$3491,$ad43,$ff21,$7ebb,$0100,$20

DC $a000,$a000,$a000,$6000,$6000,$a000,$a000,$6000
DC $6000,$6000,$6000,$6000,$6000,$a000,$a000,$6000
DC $a000,$6000,$a000,$6000,$a000,$6000,$a000,$6000
DC $a000,$a000,$6000,$6000,$6000,$a000,$a000,$a000
DC $a000,$a000,$a000,$a000,$a000,$a000,$a000,$a000
DC $a000,$6000,$6000,$a000,$a000,$a000,$a000,$a000
DC $a000,$a000,$a000,$a000,$a000,$6000,$6000,$a000
DC $6000,$a000,$6000,$a000,$6000,$6000,$6000,$6000
DC $a000,$a000,$6000,$6000,$a000,$a000,$a000,$6000
DC $a000,$6000,$a000,$6000,$6000,$a000,$6000,$a000
DC $a000,$a000,$6000,$a000,$a000,$a000,$a000,$6000
DC $6000,$6000,$6000,$a000,$6000,$6000,$6000,$6000
DC $6000,$6000,$a000,$a000,$a000,$a000,$6000,$6000
DC $a000,$a000,$6000,$a000,$a000,$a000,$a000,$a000
DC $a000,$6000,$6000,$a000,$a000,$a000,$a000,$a000
DC $6000,$a000,$6000,$a000,$6000,$6000,$a000,$a000
DC $6000,$6000,$6000,$a000,$a000,$6000,$a000,$6000
DC $6000,$6000,$a000,$a000,$a000,$6000,$a000,$a000
DC $a000,$a000,$6000,$6000,$6000,$a000,$a000,$6000
DC $6000,$a000,$6000,$a000,$6000,$a000,$a000,$a000
DC $a000,$a000,$6000,$6000,$a000,$6000,$a000,$6000

;
org y:$0

PATH1 DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0
DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0

PATH2 DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0
DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0

Example B-1 Extended Algorithm Program Listing (Continued)

Extended Algorithm Program Listing

MOTOROLA Viterbi Decoder Implementation B-13

BRY DSM NUMSTATES/2
DECOUT DS NUMINPUTS/8

org y:@cvs(y,INDATA)
YDATA DC $a000,$a000,$a000,$6000,$a000,$6000,$a000,$6000

DC $a000,$6000,$a000,$a000,$6000,$6000,$a000,$6000
DC $a000,$a000,$6000,$a000,$6000,$6000,$6000,$a000
DC $6000,$6000,$6000,$6000,$6000,$6000,$a000,$6000
DC $6000,$6000,$6000,$a000,$a000,$a000,$6000,$a000
DC $a000,$a000,$6000,$6000,$6000,$a000,$6000,$a000
DC $6000,$6000,$6000,$6000,$a000,$6000,$a000,$a000
DC $6000,$6000,$a000,$6000,$6000,$6000,$a000,$6000
DC $a000,$6000,$6000,$a000,$a000,$6000,$a000,$a000
DC $a000,$a000,$a000,$6000,$a000,$a000,$6000,$6000
DC $6000,$a000,$6000,$a000,$a000,$6000,$a000,$6000
DC $6000,$6000,$a000,$a000,$6000,$a000,$6000,$a000
DC $a000,$6000,$6000,$a000,$a000,$6000,$a000,$a000
DC $a000,$a000,$a000,$a000,$a000,$6000,$a000,$6000
DC $a000,$6000,$a000,$6000,$6000,$6000,$6000,$6000
DC $a000,$a000,$a000,$a000,$a000,$6000,$6000,$a000
DC $a000,$a000,$a000,$6000,$a000,$a000,$6000,$a000
DC $6000,$6000,$a000,$6000,$6000,$6000,$a000,$a000
DC $6000,$6000,$a000,$a000,$6000,$a000,$a000,$6000
DC $a000,$6000,$6000,$6000,$6000,$a000,$a000,$a000
DC $a000,$a000,$6000,$a000,$6000,$6000,$6000,$6000
end

Example B-1 Extended Algorithm Program Listing (Continued)

B-14 Viterbi Decoder Implementation MOTOROLA

Extended Algorithm Program Listing

APPENDIX C

24-BIT ALGORITHM PROGRAM LISTING

C-2 Viterbi Decoder Implementation MOTOROLA

24-Bit Algorithm Program Listing

C.1 24-BIT ENHANCED VITERBI DECODER PROGRAM LISTINGC-3

24-Bit Algorithm Program Listing

MOTOROLA Viterbi Decoder Implementation C-3

C.1 24-BIT ENHANCED VITERBI DECODER PROGRAM LISTING

This section contains a second complete program listing for Section 4. This program
is nearly identical to the program listing in Appendix B. The difference is that the data is
24-bit data, meant to run on a 56300 family digital signal processor in 24-bit arithmetic
mode. In addition, the path data is stored and recovered in 16-bit words instead of 8-bit
bytes. The longer register allow us to reduce the memory and some complexity in the
traceback.

C-4 Viterbi Decoder Implementation MOTOROLA

24-Bit Algorithm Program Listing

Example C-1 24-bit Algorithm Program Listing

OPT mex
;****************56600**24 bit VITERBI DECODER*****************************
; THIS ROUTINE IMPLEMENTS A CONVOLUTIONAL DECODER USING THE VITERBI ALG.
; IT IS OPTIMIZED FOR SPEED, WHICH MEANS THAT EVERY ALU REGISTER
; AND ALL OF THE R REGISTERS ARE USED. A SIGNIFICANT AMOUNT OF
; THESE CAN BE FREED BY STORING AND REUSING REGISTERS BETWEEN THE
; FINDMETRICS ROUTINES AND THE ACS,ACSFlush ROUTINES.
; INPUT is at INDATA: real in x imag in y. OUTPUT begins at y:DECOUT
; GLOBAL REGISTER USE: a,b,x,y,r012345,n025,m245(are set to a modulo mode)
;***
;
;*****************BRANCH METRIC MACRO*************************************
; FUNCTION: Input data and generate branch metrics. This function
; subtracts the path metric for state 0 from all branch metrics
; to provide autonormaliztion. For this decoder, the metric is a scaled
; sum or difference of the real and imag inputs.
; INPUTS:
; r2 should point to the beginning of the branch metric table
; r5 should point to the latest path metric for state 0
; r1 should point to the next input XY data pair
; OUTPUTS:
; Branch metrics are stored at BRX in XY memory
; REGISTERS USED:
; a,b,x01,y01,r1,r2,r5, r5 unchanged,r2 unchanged (modulo req'd)
;**
;
FindMetricsmacro

move x:(r5),a ;st. metric scaling, read last st. 0
neg a l:(r1)+,y ;negate metric|grab dec input
move #-16,x1 ;sign for real component, upper br.
mac x1,y1,a a,b
move y1,x0 ;cp metric to b|mv real in to x0
mac x1,y0,a a,y1 ;y1 gets 0x partial branch
subl a,b b,x0 ;a has 00 br., b has 11 branch, save st.
tfr y1,a a,y1 ;swap 0x and 00 to compute 01 branch
mac -x1,y0,a b,x1 ;a gets 01 br,x1 gets cp of 11 br.
tfr x0,b b,y0 ;swap st metric,11 branch to y0
subl a,b y1,x0 ;b gets 10 br, x0 has copy of 00 br.

24-Bit Algorithm Program Listing

MOTOROLA Viterbi Decoder Implementation C-5

;***
; AT this point, X is configured with br 11|00, y with 00|11, and
; AB with 01|10, BA with 10|01 all needed for quick storage in XY memory
;***

move x,l:(r2)+ ;store 11 in location 0.
move ab,l:(r2)+ ;store 01 in location 1
move ba,l:(r2)+ ;store 10 in location 2
move y,l:(r2)+ ;store 00 in location 3
move y,l:(r2)+ ;store 00 in location 4
move ba,l:(r2)+ ;store 10 in location 5
move ab,l:(r2)+ ;store 01 in location 6
move x,l:(r2)+ ;store 11 in location 7
move ba,l:(r2)+ ;store 10 in location 8
move y,l:(r2)+ ;store 00 in location 9
move x,l:(r2)+ ;store 11 in location 10
move ab,l:(r2)+ ;store 01 in location 11
move ab,l:(r2)+ ;store 01 in location 12
move x,l:(r2)+ ;store 11 in location 13
move y,l:(r2)+ ;store 00 in location 14
move ba,l:(r2)+ ;store 10 in location 15 r2-> BRX
endm

Example C-1 24-bit Algorithm Program Listing (Continued)

C-6 Viterbi Decoder Implementation MOTOROLA

24-Bit Algorithm Program Listing

;*******************viterbi add, compare, select butterfly macro***
; FUNCTION: Update path metrics/paths for the Viterbi algorithm by
; doing an add,compare,select update for state pairs.
; INPUTS:
; r2 should point to the beginning of the branch metric table
; r5 should point to the latest path metric for state 0
; r4 should point to the storage location for updated state 0
; n5 should offset addresses by NUMSTATES/2
; OUTPUTS:
; Updated path metrics/paths stored in XY memory
; REGISTERS USED:
; a,b,y01,r2,r4,r5,n5 r2 unchanged (modulo req'd)
; Registers:
; r5, pointer to the path metric/path table, arranged as
; x: path metric, y: path,states ordered assuming
; bits shift right to left.
; r4, pointer to the output path metric/path table
; r0, pointer to the branch metric table, arranged
; as x:C, y:D, CD,CD,CD, etc.
;
; SA------NSA
; \ C /
; D \ /
; \/
; /\
; D / \
; / \
; SB------NSB
; C
;***
;
ACS macro
;
; move #BRY,r2 ;r2 points to branch metrics

move l:(r2)+,y ;get first branch metric
move l:(r5)+n5,a ;load 1st metric/path pair

;
do #NoAcs,_P_NextStage ;update each state
add y0,a l:(r5)-n5,b ;get next pair
add y1,b ;update metrics
max a,b l:(r5)+n5,a ;reload 1st pair
vsl b,0,l:(r4)+ ;end top half
add y1,a l:(r5)-n5,b ;reload next pair
add y0,b (r5)+ ;inc st ptr
max a,b l:(r5)+n5,a ;load next pair
move l:(r2)+,y ;load next branch metrics
vsl b,1,l:(r4)+ ;end 2nd half

_P_NextStage
nop ;needed to separate do loop ends
endm

Example C-1 24-bit Algorithm Program Listing (Continued)

24-Bit Algorithm Program Listing

MOTOROLA Viterbi Decoder Implementation C-7

;*******************************;PreACS***************************************
;FUNCTION: Update path metrics/paths for the Viterbi algorithm by the ACS
; butterfly from assumed 0 state to start, and double the number of states
; on each invocation until the full trellis is used. This routine CANNOT
; be used unless the encoder is starting from an all 0's state. Note this
; means it cannot be used if the data is a continuation of a previously
; processed data stream. Use the ACS macro instead. However, for packetised
; data, or other data that assumes the data starts with the encoder 0 filled,
; this routine saves cycles, AND only state 0 needs to be initialised
; before starting the decode.
; INPUTS:
; r2 should point to the beginning of the branch metric table
; r5 should point to the latest path metric for state 0
; r4 should point to the storage location for updated state 0
; n5 should be the number of input states/2 to process
; n5 is doubled each time this macro is invoked
; OUTPUTS:
; Updated path metrics/paths stored in XY memory
; REGISTERS USED:
; a,b,y01,r2,r3,n3,r4,r5,n5 r2 unchanged (modulo req'd)
; Registers:
; r5, pointer to the path metric/path table, arranged as x: path metric,
; y: path,states ordered assuming bits shift right to left.
; r4, pointer to the output path metric/path table
; r0, pointer to the branch metric table, arranged as x:C, y:D, CD,CD, etc.
;
; SA------NSA
; \ C
; D \
; \
; \
; \
; \
; SB NSB
;***
PreACS macro
; move #BRY,r2 ;r2 points to branch metrics

move r5,r3 ;save r5 to init r4 later
move r4,n3 ;save r4 to init r5 later
move l:(r2)+,ba ;get first branch metrics
move l:(r5)+,y ;load 1st metric/path pair
do n5,_P_NextStage ;update each state
add y,a ;update metric
add y,b l:(r5)+,y ;updt met, ld nxt pair
vsl a,0,l:(r4)+ ;end top half
vsl b,1,l:(r4)+ ;end 2nd half
move l:(r2)+,ba ;ld br met

_P_NextStage
move n5,b ;recall loop count
asl b n3,r5 ;mult it by 2
move r3,r4
move b,n5 ;storage for loop count
move #BRY,r2 ;reinit branch ptr
endm

Example C-1 24-bit Algorithm Program Listing (Continued)

C-8 Viterbi Decoder Implementation MOTOROLA

24-Bit Algorithm Program Listing

;***********************ACSFlush Macro****************************
; FUNCTION: This routine is very similar to the ACS macro, except that
; the encoding shift register is now flushing back to 0.
; This means that only the upper paths are taken, halving
; the number of states we need to update. The ACS code is
; modified so that we don't compute the lower paths. In
; addition, state storage is modified so that survivor
; paths are stored in consecutive memory locations.
; Survivors are even states on the first pass, then
; every fourth state, etc.
; INPUTS:
; r2 should point to the beginning of the branch metric table
; r5 should point to the latest path metric for state 0
; r4 should point to the storage location for updated state 0
; n5 should be the number of input states/2 to process
; n5 is halved each time this macro is invoked
; OUTPUTS:
; Updated path metrics/paths stored in XY memory
; REGISTERS USED:
; a,b,y01,r2,n2,r3,n3,r4,r5,n5 r2 unchanged (modulo req'd)
;
; SA------NSA
; C /
; /
; /
; D/
; /
; /
; SB
;
;***
ACSFlush macro
;** move #BRY,r2 ;r2 points to branch metrics

move r5,r3 ;save r5 to init r4 later
move r4,n3 ;save r4 to init r5 later
move l:(r2)+n2,y ;get first branch metrics
move l:(r5)+n5,a ;load 1st metric/path pair

;
do n5,_NextStage ;update each state
add y0,a l:(r5)-n5,b ;updt met,load next pair
add y1,b l:(r2)+n2,y ;updt met,ld nxt br met
max a,b (r5)+ ;sel surv,save met,inc st ptr
move l:(r5)+n5,a ;ld next pair
vsl b,0,l:(r4)+ ;end 2nd half

_NextStage
move n5,b ;recall flush count, loop count
asr b n2,a ;divide it by 2,prep double branch jump
move n3,r5
move b,n5 ;storage for flush count
asl a (r2)-n2 ;reinit branch ptr
move r3,r4
move a,n2 ;next pass, skip more branches
endm

Example C-1 24-bit Algorithm Program Listing (Continued)

24-Bit Algorithm Program Listing

MOTOROLA Viterbi Decoder Implementation C-9

;***********************STORE PARTIAL PATH METRICS MACRO***************
; FUNCTION: The storage is somewhat twisted. The stored paths are current
; up to the most recent input bit, which is NOT convenient for
; traceback. As a result, I process the data as follows: I pre
; loaded the path with 6 bits. Thereafter, I process 8 path bits
; so the path has 14 bits. The most significant 8, I save.
; the remaining bits are the current encoder values for that path.
; The 5 lsb's are the current state.
; INPUTS:
; n0 should point to memory where the path bits are to be stored
; r5 should point to the latest path metric for state 0
; OUTPUTS:
; Updated paths storage X memory, n0 points to next path storage
; REGISTERS USED:
; a,b,y1,r0,n0,r3,r5
;***
;
; Store off path data in wordsto avoid overflow in path reg's
;
STOREPATHS macro LPCNT
;

move n0,r3 ;n0 stores path data pointer
move n0,r0
move #>$1f,y1 ;mask for 1 lsb's(NUMENCBITS-1 of 1's)
do LPCNT,_PSTORE1 ;store paths for each state
move y:(r5),b ;grab path
asr #5,b,a ;align bits5-20 w/ a1 (16 bits beyond enc)
and y1,b ;mask off 5 lsb's to return to path
move a1,x:(r3)+ ;store 16 ms path bits
move b1,y:(r5)+ ;return 5 ls path bits

_PSTORE1
lua (R4+NUMSTATES),R5 ;r5 points to latest states
lua (r0+NUMSTATES),n0 ;update path data pointer
endm

Example C-1 24-bit Algorithm Program Listing (Continued)

C-10 Viterbi Decoder Implementation MOTOROLA

24-Bit Algorithm Program Listing

;***********************TRACEBACK OUTPUT PATH MACRO*******************
; FUNCTION: To output the correct data, we begin at the end. We take the
; output path of the survivor state (0), and place its associated
; output path in memory as the last output data word. Then we use
; bits 11-15 of that data as an offset pointer to the correct traceback
; data of the next previous path data memory. We continue this until
; we have traced the data back to the begining.
; INPUTS:
; n0 should point to memory where the path bits are to be stored
; r5 should point to the latest path metric for state 0
; OUTPUTS:
; Decoder output data in Y memory
; REGISTERS USED:
; a,b,y,r0,n0,r2,r5
;
;***
;
; Store off path data in words to avoid overflow in path reg's
;
TRACEBACK macro
;

move N0,R0 ;path ptr to r0
move #0,n0 ;prep for traceback
move #DECOUT+(NUMINPUTS/8/2),r2 ;point to end of output buffer
move y:(r5),b ;recall last path
move #-1,m2 ;r2 now linear
move b1,x:(r0) ;save off last path data
move #$5023,y0 ;control word for extract

;
;*****************BEGIN TRACEBACK*****************************
;

IF (EVEN==0)
move x:(r0+n0),a ;recall last path
extractu y0,a,b ;bits 11-15 of a1 point to next data
lua (r0-NUMSTATES),r0 ;dec r0 to next earlier state set
lsl #8,a ;move to upper byte
move b0,n0 ;load as offset for traceback
move a1,y:(r2)- ;save off
ENDIF

;
do #NUMINPUTS/8/2,TRCBK ;once for each byte pair
move x:(r0+n0),a ;recall last path
extractu y0,a,b ;get ptr to next earlier path
lua (r0-NUMSTATES),r0 ;point r0 to next earlier states
move b0,n0 ;save ptr as offset
move a1,y:(r2)- ;store result

TRCBK
endm

Example C-1 24-bit Algorithm Program Listing (Continued)

24-Bit Algorithm Program Listing

MOTOROLA Viterbi Decoder Implementation C-11

;***************************MAIN***
;
NUMSTATESequ 32
ENCBITS equ 6 ;most cases=log2(NUMSTATES)+1
NoAcs equ NUMSTATES/2
NUMINPUTSequ 168
EVEN equ 1-(NUMINPUTS/8)%2 ;EVEN SET TO 1/0 IF NUMINPUTS IS
; EVEN/ODD #BYTES

org p:$400
VITDEC move #NUMSTATES/2-1,m2 ;r2 points to branch metric table

move #BRX,r2
move #STATE1,r5 ;r5 points to current state metric
move #STATE2,r4 ;r4 points to updated state metric
move #NUMSTATES*2-1,m4 ;modulo to flip locations each sym
move #NUMSTATES*2-1,m5
move #>1,n5 ;ctr/input metrics spacing for each

; butterfly
; move #NUMSTATES/2,n5 ;input spacing for each butterfly

move #PATHOUT,n0 ;n0 points to stor for output paths
move #-1,m3 ;set linear mode, traceback ptr
move #>1,n2

;
move #INDATA,r1 ;r1 points to input data

;
;***********************PREPARATION LOOP*************************
; This loop iterates by the number of bits used in the
; encoder to pre load the bit decisions. Thereafter,
; the paths are updated and stored off in bytes. We need
; the preload bits so that the stored path metrics point
; correctly to their previous paths for traceback.
;**
;

do #ENCBITS-1,PRELP ;preload decisions/trellis start
;

FindMetrics
PreACS

; ACS
PRELP

move #NUMSTATES/2,n5 ;n5 now serves as offset between
; fetch states
;*****************MAIN LOOP--PROCESS BYTES OF DATA*****************

do #NUMINPUTS/16-1,DATALP ;process bytes of output
do #16,SYMLP ;16 bits per byte

;
FindMetrics
ACS

SYMLP
STOREPATHS#NUMSTATES

DATALP

Example C-1 24-bit Algorithm Program Listing (Continued)

C-12 Viterbi Decoder Implementation MOTOROLA

24-Bit Algorithm Program Listing

;********POSTPROCESSING, FLUSH ENCODER BACK TO 0****
; ASSUMES that there are an odd number of bytes of data!!!
; This will need redoing if the number of data bytes is even.
; THESE SETUPS SHOULD ACCOMODATE ENCODERS OF 5 TO 8 BITS.
; ENCBITS-1 PREPROCESSED, 152 IN MAIN LOOP DONE
; SO WE HAVE 24-ENCBITS+1 BITS LEFT.
; WE DO ENCODER FLUSHING FOR #ENCBITS-1 BITS. SO WE HAVE
; (24-ENCBITS+1) - ENCBITS+1 DO DO BEFORE FLUSHING.
; NEXT, WE PROCESS THE ENCODER FLUSH BITS, STOPPING TO STORE
; PATHS AS NEEDED. WE STORE AFTER 16 BITS PROCESSED SO THIS MEANS
; STORE PATHS AFTER 24-2*ENCBITS+2 (from nonflush) +16-(24-2*ENCBITS+2)
; (these are the additional flush bits needed before storing paths).
; FINALLY, WE FINISH OUT THE DATA. THE BITS REMAINING ARE:
; 24-ENCBITS+1-(24-2*ENCBITS+2)-(16-(24-2*ENCBITS+2))
; = 8-ENCBITS+1.
;
; FOR THIS EXAMPLE, WE NONFLUSH PROCESS
; 14 MORE BITS, THEN FLUSH 2, STORE PATH, THEN FLUSH
; THE LAST THREE TO STATE 0.
; LAST 14 NONFLUSH BITS---
;**

do #24-(2*ENCBITS)+2,LAST14
FindMetrics
ACS

;
LAST14
;
; ENCODER FLUSH-----
;

move #>NUMSTATES/2,n5 ;flush, process 16,8, 4, then 2,
; then 1 state

do #16-(24-(2*ENCBITS)+2),FLSH;process 2 of last five bits to get
; next to last byte

FindMetrics
ACSFlush

; ACS
FLSH

STOREPATHS#NUMSTATES/8
;
; FLUSH THE LAST THREE BITS------
;

do #8-ENCBITS+1,FLSH3 ;process last 3 bits to get last
; byte

FindMetrics
ACSFlush

; ACS
FLSH3
;

TRACEBACK
;
FINISH nop

Example C-1 24-bit Algorithm Program Listing (Continued)

24-Bit Algorithm Program Listing

MOTOROLA Viterbi Decoder Implementation C-13

;**********************MEMORY ORGANIZATION****************************
; MOST OF THE MEMORY LOCATION IS IMPORTANT--THE FIRST TWO
; LABELS OF THE X AND Y DATA MEMORY ARE PAIRED AND MUST
; BE CO LOCATED (AT THE SAME ADDRESSES). IN ADDITION, STATE1
; AND STATE2 MUST BE LOCATED ON A 0 MOD 2*NUMSTATES BOUNDARY,
; X and Y memory for input data must be paired --GOOD LUCK.....
;***
;

org x:$0
STATE1 DC $0ff,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0

DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0
STATE2 DC $0ff,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0

DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0
BRX DSM NUMSTATES/2
;
PATHOUT DS NUMSTATES*(NUMINPUTS/8+1)
INDATA ;THIS DATA ENCODES
$1234,$5678,$9abc,$4973,$7925,$3491,$ad43,$ff21,$7ebb,$0100,$20

DC $a00000,$a00000,$a00000,$600000,$600000,$a00000,$a00000,$600000
DC $600000,$600000,$600000,$600000,$600000,$a00000,$a00000,$600000
DC $a00000,$600000,$a00000,$600000,$a00000,$600000,$a00000,$600000
DC $a00000,$a00000,$600000,$600000,$600000,$a00000,$a00000,$a00000
DC $a00000,$a00000,$a00000,$a00000,$a00000,$a00000,$a00000,$a00000
DC $a00000,$600000,$600000,$a00000,$a00000,$a00000,$a00000,$a00000
DC $a00000,$a00000,$a00000,$a00000,$a00000,$600000,$600000,$a00000
DC $600000,$a00000,$600000,$a00000,$600000,$600000,$600000,$600000
DC $a00000,$a00000,$600000,$600000,$a00000,$a00000,$a00000,$600000
DC $a00000,$600000,$a00000,$600000,$600000,$a00000,$600000,$a00000
DC $a00000,$a00000,$600000,$a00000,$a00000,$a00000,$a00000,$600000
DC $600000,$600000,$600000,$a00000,$600000,$600000,$600000,$600000
DC $600000,$600000,$a00000,$a00000,$a00000,$a00000,$600000,$600000
DC $a00000,$a00000,$600000,$a00000,$a00000,$a00000,$a00000,$a00000
DC $a00000,$600000,$600000,$a00000,$a00000,$a00000,$a00000,$a00000
DC $600000,$a00000,$600000,$a00000,$600000,$600000,$a00000,$a00000
DC $600000,$600000,$600000,$a00000,$a00000,$600000,$a00000,$600000
DC $600000,$600000,$a00000,$a00000,$a00000,$600000,$a00000,$a00000
DC $a00000,$a00000,$600000,$600000,$600000,$a00000,$a00000,$600000
DC $600000,$a00000,$600000,$a00000,$600000,$a00000,$a00000,$a00000
DC $a00000,$a00000,$600000,$600000,$a00000,$600000,$a00000,$600000

;

Example C-1 24-bit Algorithm Program Listing (Continued)

org y:$0
PATH1 DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0

DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0
PATH2 DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0

DC $0,$0,$0,$0,$0,$0,$0,$0,0,0,0,0,0,0,0,0
BRY DSM NUMSTATES/2
DECOUT DS NUMINPUTS/8

org y:@cvs(y,INDATA)
YDATA DC $a00000,$a00000,$a00000,$600000,$a00000,$600000,$a00000,$600000

DC $a00000,$600000,$a00000,$a00000,$600000,$600000,$a00000,$600000
DC $a00000,$a00000,$600000,$a00000,$600000,$600000,$600000,$a00000
DC $600000,$600000,$600000,$600000,$600000,$600000,$a00000,$600000
DC $600000,$600000,$600000,$a00000,$a00000,$a00000,$600000,$a00000
DC $a00000,$a00000,$600000,$600000,$600000,$a00000,$600000,$a00000
DC $600000,$600000,$600000,$600000,$a00000,$600000,$a00000,$a00000
DC $600000,$600000,$a00000,$600000,$600000,$600000,$a00000,$600000
DC $a00000,$600000,$600000,$a00000,$a00000,$600000,$a00000,$a00000
DC $a00000,$a00000,$a00000,$600000,$a00000,$a00000,$600000,$600000
DC $600000,$a00000,$600000,$a00000,$a00000,$600000,$a00000,$600000
DC $600000,$600000,$a00000,$a00000,$600000,$a00000,$600000,$a00000
DC $a00000,$600000,$600000,$a00000,$a00000,$600000,$a00000,$a00000
DC $a00000,$a00000,$a00000,$a00000,$a00000,$600000,$a00000,$600000
DC $a00000,$600000,$a00000,$600000,$600000,$600000,$600000,$600000
DC $a00000,$a00000,$a00000,$a00000,$a00000,$600000,$600000,$a00000
DC $a00000,$a00000,$a00000,$600000,$a00000,$a00000,$600000,$a00000
DC $600000,$600000,$a00000,$600000,$600000,$600000,$a00000,$a00000
DC $600000,$600000,$a00000,$a00000,$600000,$a00000,$a00000,$600000
DC $a00000,$600000,$600000,$600000,$600000,$a00000,$a00000,$a00000
DC $a00000,$a00000,$600000,$a00000,$600000,$600000,$600000,$600000
end

Example C-1 24-bit Algorithm Program Listing (Continued)

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages. ÒTypicalÓ
parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including ÒTypicalsÓ must be
validated for each customer application by customerÕs technical experts. Motorola does not convey any license
under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications intended to support life,
or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of
the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

How to reach us:

USA/Europe/Locations Not Listed:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1 (800) 441-2447
1 (303) 675-2140

Motorola Fax Back System (Mfaxª):
TOUCHTONE (602) 244-6609
1 (800) 774-1848
RMFAX0@email.sps.mot.com
http://www.motorola.com/mfax

Asia/Pacific:
Motorola Semiconductors H.K. Ltd.
8B Tai Ping Industrial Park
51 Ting Kok Road
Tai Po, N.T., Hong Kong
852-26629298

Technical Resource Center:
1 (800) 521-6274

DSP Helpline
dsphelp@dsp.sps.mot.com

Japan:
Nippon Motorola Ltd
SPD, Strategic Planning Office
4-32-1, Nishi-Gotanda
Shinagawa-ku, Tokyo 141, Japan
81-3-5487-8488

Internet:
http://www.motorola-dsp.com/

OnCE and Mfax are registered trademarks of Motorola, Inc.

	Implementing Viterbi Decoders Using the VSL Instruction on DSP Families DSP56300 and DSP56600
	Table of Contents
	1.1 Introduction 1-3
	1.2 Viterbi Algorithm 1-3
	1.3 Manual Organization 1-4
	2.1 IS-136 2-3
	2.2 Convolutional Encoding 2-3
	2.3 Viterbi Decoder 2-4
	2.4 Algorithmic Enhancements 2-12
	3.1 Introduction 3-3
	3.2 Partitioning the Task 3-3
	3.3 The Inner Loop: Viterbi Butterflies 3-3
	3.4 Creating the Branch Metrics 3-6
	3.5 Storing the Paths 3-11
	3.6 Traceback: Obtaining the Decoder Output 3-13
	3.7 Main: Gluing the Pieces Together 3-17
	3.8 Memory Organization 3-19
	4.1 Introduction 4-3
	4.2 Allowing More General Branch Metrics 4-3
	4.3 Starting from 0: The Pre ACS Macro 4-8
	4.4 Collapsing the States 4-10
	4.5 Main: Putting the Pieces Back Together 4-12
	5.1 Summary 5-3
	5.2 Conclusions 5-3
	5.3 Program Listings 5-4
	A.1 Viterbi Algorithm PROGRAM LISTING A-3
	B.1 16-Bit Enhanced Viterbi Decoder PROGRAM LISTING B-3
	C.1 24-Bit Enhanced Viterbi Decoder PROGRAM LISTING C-3

	List of Figures
	List of TABLes
	List of EXAMPLes
	Introduction
	1.1 Introduction 1-3
	1.2 Viterbi Algorithm 1-3
	1.3 Manual Organization 1-4
	1.1 Introduction
	1.2 Viterbi Algorithm
	1.3 Manual Organization

	The Viterbi Algorithm
	2.1 IS-136 2-3
	2.2 Convolutional Encoding 2-3
	2.3 Viterbi Decoder 2-4
	2.4 Algorithmic Enhancements 2-12
	2.1 IS-136
	2.2 Convolutional Encoding
	2.3 Viterbi Decoder
	2.4 Algorithmic Enhancements

	Expanding the Viterbi Algorithm
	3.1 Introduction 3-3
	3.2 Partitioning the Task 3-3
	3.3 The Inner Loop: Viterbi Butterflies 3-3
	3.4 Creating the Branch Metrics 3-6
	3.5 Storing the Paths 3-11
	3.6 Traceback: Obtaining the Decoder Output 3-13
	3.7 Main: Gluing the Pieces Together 3-17
	3.8 Memory Organization 3-19
	3.1 Introduction
	3.2 Partitioning the Task
	3.3 The Inner Loop: Viterbi Butterflies
	3.4 Creating the Branch Metrics
	3.5 Storing the Paths
	3.6 Traceback: Obtaining the Decoder Output
	3.7 Main: Gluing the Pieces Together
	3.8 Memory Organization

	Algorithmic Extensions
	4.1 Introduction 4-3
	4.2 Allowing More General Branch Metrics 4-3
	4.3 Starting from 0: The Pre ACS Macro 4-8
	4.4 Collapsing the States 4-10
	4.5 Main: Putting the Pieces Back Together 4-12
	4.1 Introduction
	4.2 Allowing More General Branch Metrics
	4.3 Starting from 0: The Pre ACS Macro
	4.4 Collapsing the States
	4.5 Main: Putting the Pieces Back Together

	Summary
	5.1 Summary 5-3
	5.2 Conclusions 5-3
	5.3 Program Listings 5-4
	5.1 Summary
	5.2 Conclusions
	5.3 Program Listings

	Basic Algorithm Program Listing
	A.1 Viterbi Algorithm PROGRAM LISTING A-3
	A.1 Viterbi Algorithm PROGRAM LISTING

	Extended Algorithm Program Listing
	B.1 16-Bit Enhanced Viterbi Decoder PROGRAM LISTING B-3
	B.1 16-Bit Enhanced Viterbi Decoder PROGRAM LISTING

	24-Bit Algorithm Program Listing
	C.1 24-Bit Enhanced Viterbi Decoder PROGRAM LISTING C-3
	C.1 24-Bit Enhanced Viterbi Decoder PROGRAM LISTING

